ICT 1301
TAS
Thirteen Hundred
Assembly System

Scanned 2010
at the 1ct1301

Resurrection Project
IcCt1301.co.uk

I.C.T. 1300 SERIES

TAS MANUAL

@ International Computers and Tabulators Limited

Second Edition_________ December 1963
Third Edition__ _ _ _ _ ___February 1965

This Edition of the TAS Manual replaces all previous Editions.

Computer Publication 3175
Printed in Great Britain by
International Computers and Tabulators Limited,

London

Page

17

79

92

101

133

145

145

Note

Since TAS 1 '"B'" has been included in the Non-maintained Section of the Subroutine Library,
all reference to it in the manual should be deleted. These references occur on pages 2, 37, T3,

74, 83 and 118.

1300 series TAS Manual

ERRATA
Correction
'Runout’ " or 199 (TAS 2) lines" should read
Line 2. " or 235 (TAS 2) lines"
Last line Last line should be,

1110123 | Incorrect modification. | Abandon."

Problems and Solutions The second sentence should be,

Paragraph 1. "The record may also be defined as an input card,
but this is not as convenient since it is required
that the number of columns specified totals 80."

Official Subroutine This list should be, i

numbers. "TAS 1 Compiler and Control: 1/01/00
TAS 2 Compiler and 1" or ' Control: 1/02/00
TAS 2 3" Control: 1/02/01"

Part 2, paragraph 2 "'spaces 199 lines. ' should be,

Last line "spaces 235 lines."

110303, Start procedure should be,
"Press Start. (Unset M. 1. 29 if TAS. 1.)"

110333 Start procedure should be,
"Replace last card read (will be rejected if TAS 1),
and press Start."

assembly system (TAS)

CONTENTS

3175(2.65)

Chapter 1

Chapter 2

Chapter 3

Chapter 4

INTRODUCTION Page
1.1 Description of TAS 1
1.2 Versions Available.. oo vt o et e oo e ae o 2
1.3 Tiayout of MANUAL: ws s o v o5 wo w5 5w o 5w 5% we 53 we 9
DATA DESCRIPTION
2.1 Tables 5
2.2 Fields 7
2.3 Working Stores 8
2.4 Constants oo il e e e e e e e 8.
INPUT AND OUTPUT: Card and Line Printer Formats
3.1, Iput Cards & ww sne s av o 4w Sl g0 & wem e a9
3.2 Qutput Cards and Lines .. v we s e ov we o5 wi weowe 10
PROCEDURE
4,1 Program Sheet Layoutooowi v w 13
4.2 Blocks 13
4.3 Labels 14
4.4 Sterling.. .. oo oo ve v v it e e e e e e e e e . 14
4.5 "Pres’ 14
467 BUDFONEINGS v i v 5w e rn s siien o svise oo Gwres i sows v woies 10
4.7 Verbs and Instructions ot s v oo ov oo oo oo 1D
4.7.1 'Stop' 16
4,7.2 "GO TO .. cv v vr or e e en n ve e e e e e 1T
4.7.3 'Compare' 18
i

4.7.4
4.7.5
4.7.6
4.7.7
4.7.8
4.7.9
4.7.10
4.7.11
4.7.12
4.7.13
4.7.14
4.7.15
4.7.16
4.7.17
4.7.18
4.7.19
4.7.20
4.7.21

'Test’

YRUPRT o v s e solee ro s wes ww siwe w0 s we sown e oo
B =T
o o T e o e
.27

PMUILiply® oo sow s sm s a0 50 00 20

‘Diide s s o aem el men mer o re oo . ©
.29
. 30

'Mask’
'"Pack'

Ll T e et 1T
. 33
. 34
. 36
.37

"Move'
'Read’
'"Punch'

"Print’

TModify .. .o e e e
. 40
. 42

W30 L e s on me s ve 2
Subroutines, and the Verb 'Obey’

"Rename’ ov oh vr v i v i e e e e e e

Chapter 5 MAGNETIC TAPE

ii

5.1 Tape File Descriptions
5.1.1 Independent Reading (Input File)
5.1.2 Independent Writing (Output File)
5.1.3 Simultaneous Read/Write
5.1.4 Simultaneous Read/Write
(Single Output Area)
5.1.5 Simultaneous Read/Write
(Double Output Area) oo vr vr ve on ..
9.1.6 File Buffer Areas: Storage Allocation
0:2. Tape Record Formatsi.. o we ve s e e v s o sam @ o
5.2.1 A Record having its own Record Area
5.2.2 A Record 'Redefining’ another Record Area .
5.2.3 A Record sharing a File Buffer Area..
5.2.4 General Considerations..

5.3 Tape Verbs

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

'Read ReCord® w5 55 35 i v wmne we ven o sniss iy 453
. 59

'Read In'

'"Write Record'.. .. «o v cv ch vt ah cn vt e e
. 61

'Write Away'

"Write File'to FIle' « vv ve o o os s wo few won o

Page

19
20
22
23
26

28

31

38

46

. 47

48

. 49

50

. 50

51
52

53
54
55

56 -
56

. 57

58

60

62

3175(2.65)

3175(2.65)

5.4

5.3.6

5.3.7
5.3.8

Programming Considerations

Higheat Key Word .. .cwv wow wnys surae wm v

5.4.1
5.4.2
0.4.3
5.4.4
5.4.5

WRIEEEERAY o v s v e v o fos 33 s s ey i

'"Write Dump'

RENEW ss o 500 s w9 53w 35 5%

Searching a File..
Job Set-Upice e o: e o w5 meles b o e o 9
RestaPts .q co v v w3 e 55w ws sww v s s row

Repositioning0 oo e

Chapter 6 HOW TO USE TAS

Appendices
A

B

6.1 The Source Program . o ww o5 o o 55 5 55 o3 e, 6

6.2

6.3

611
6.1.2

Compllation « «o w vy woone g o6 ab s awe i a s w e

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

The Object Program oo cv ci vt vr en on o

6.3.1
6.3.2
6.3.3
6.3.4

WG s won o ase o 3 o 2

Punchingol

Procedure

Aids and Directories..,
Precompilalion o e sr wv am ov o on mw o e
Error Detection..

Use of Manual Indicators..

Saving Precompilation Time

The Punch Out.

Construction of Complete Pack
Testing.. «v v v v vt vt vt e e e e e e e

Layout in Machine..

Names: Rules and Restrictions

State of Accumulator and Mill Indicators, After

Obeying Each Verb

Errors During Compilationo ..
TAS ConvVenlionSes we e e e e s s awws wes s e w5 e e

T Writing -« - o0 ee ve en v e el

2. Punching

3. Listing .. .c ve o 0o v ue

Varying Designation Column.. oo oe e W

Page
63

. 64
.. 65

66
66
67
68
68
68

69
69
70

71
71
71
71
72
72
72

73
73
73
73
74

75

i

79

81

81
81
81

83

iii

Appendices

iv

F

G

E

=

Page
Utilizing Spare FiA.S: v wi ae s e oo wwme s o ioms w1 89
Incorporating Magnetic Tape Subroutines. 9
G(a) Record Present Routine oo oo oo .. 93
G(b) Record Stacker Routine .97
TAS Compilers and Stationery:
Official Numbers and Formats 101
Sample Program Listing..107
Limitations 1T
'B', 'C', 'E' and 'F' Cards ..119
Formats of Instructionso .. =123
Arranging Data on Magnetic Tape131
Notes on Input and Output Macros.. v w0 4o o0 ..133
1. Read, Print and Punch (TAS 1)133
2. Read, Print and Punch (TAS 2) =133
3. 'RUNOUT' (TAS A)osr ss wor s vews w0 o0 s a3 o wn e sl OO
4. Restarting after "RUNOUT" o0 v v vv o o0 ..134
5. Magnetic Tape Macros (TAS 2)134
Compiler Locations.. oo oo o oo v e we o0 .. 20139
Compiler Allocationof ILA.S. Storage specifiedby User 141
Dumping or Repositioning: Special Table143
Standard Stops during Object Program running145

3175(2.65)

3175(2.65)

5.4

5.3.6
5.3.7
5.3.8

Programming Considerations,

Highest Key Wotdi.: s ws s sx sale e 55 500 i

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5

TWrite End' .. ococvsee e e e e e

'"Write Dump'’

'Renew'..

Searching a File.. oo v o0 vt n n ol o
Job Set-Upo o0 oo v e ov o'e
| SHCT-1 72 RS S

Repositioning« o oh il vl v v i e

Chapter 6 HOW TO USE TAS

Appendices
A

B

6.1 The Source Program o v we as v oi 55 v 56 5 55 ¥ s

6.2

6.3

611
6.1.2

Compllation = «« w de svei e oo e oo e o welen am o o

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

The Object Program oo oo i o en ol L
TherPunch QU se v vons a0 5 w0 35 59 &

6.3.1
6.3.2
6.3.3
6.3.4

WIPItING < oo mnan wes i v w5

Punching oo oo oiin e

Procedure

Aids and Directories..
Precompilation .. «ie sope as o e v v o s
Error Detection..

Use of Manual Indicators..

Saving Precompilation Time

Construction of Complete Pack
Testing.. .. v v vv ve v vs i e e e e e el

Layout 10 MIChIne : wu v wm b 2w 0 5 5 5

Names: Rules and Restrictions

State of Accumulator and Mill Indicators, After

Obeying Each Verb

Errors During Compilation
TAS ConvenlionS.s e s e o we e e s o ae 5% o e %

1i © WEILIAE v vee v wn on o o6 o o e v o5 5 18

2. Punching
3. Listing ee oo oe o0

Varying Designation Column.. oo oo oo s s L.

Page
63

. 64
.. 65

66
66
67
68
68
68

69
69
70

71
71
71
71
72
72
72

73
73
73
73
T4

5

77

79

81

81
81
81

83

iii

Appendices

iv

F

G

[

Zz 2 B =

Page
Utilizing Spare LA.S. o oo ot i vt ot i v vs we we e o 89
Incorporating Magnetic Tape Subroutines. ., 91
G(a) Record Present Routine vv vv vr w0 93
G(b) Record Stacker Routine .97
TAS Compilers and Stationery:
Official Numbers and Formats 101
Sample Program Listing.. 107
Limitations o
'B', 'C', 'E' and 'F' Cards ..119
Formats of Instructions: i o we v w530 sw wa o5 v 0w ssLE0
Arranging Data on Magnetic Tape ..131
Notes on Input and Output Macros..o v oo ov133
1. Read, Print and Punch (TAS 1)133
2. Read, Printand Punch (TAS 2)133
3. 'RUNOUT' (TAS D w5 e vs som w5 = e 5w s com s@ L OGS
4, Restarting after "RUNOUT" v o0 ov v 134
5. Magnetic Tape Macros (TAS 2)134
Compiler Locations.. o oo v o v vv o v . 20139
Compiler Allocationof L A.S. Storage specifiedby User 141
Dumping or Repositioning: Special Table143
Standard Stops during Object Program running..145

3175(2.65)

Chapter |

INTRODUCTION

DESCRIPTION OF TAS 1.1

This manual contains a description of TAS.

The user does not require a knowledge of machine code, although a general appreciation of the
1300 Series Computers - such as would be gained on an L.C.T, Computer Appreciation course - is
needed.

TAS has not been designed as a full autocode, and for this reason one TAS instruction does not
necessarily give rise to a large number of machine code instructions when the program is compiled.
The ratio varies according to the type of TAS instruction: some, input and output instructions for
instance, are very powerful; but most have been kept close to those of the machine, i.e. at a low
ratio. This means that the main advantage of machine code programming - close control of the
form of the program - is maintained, while the main disadvantages are eliminated. '

(a) I.A.S. and magnetic drums are treated together as a single-level store. Most of the problems
of program assembly are thus solved automatically.

(b) Input and output of data are reduced to their simplest forms. The TAS user has only to describe
the input and output and the formats they will have. All problems of organisation of data and
distribution to and from the peripheral units are dealt with automatically.

(e) All references to both data and program are mnemonic, due to the 'basic English' form of the
Code language. This eliminates the possibilities of overwriting and incorrect addressing, both
of which are frequent causes of programming errors when writing in machine code. Thus, the
main advantage of an autocode, ease of communication between machine and user, is incorporated
in TAS.

3175(2.69) 1

TAS MANUAL CHAPTER 1

VERSIONS AVAILABLE ' 1.2

TAS is available in two different versions, TAS 1 and TAS 2. In usage and programmer approach
only minor difference exist, TAS 2 representing an extension rather than an alteration of TAS 1.

Both versions will compile and run only on a machine of at least one full drum (12000 words) of storage.
The main differences between the versions consist in
(a) the amount of I.A.S. required and used by the object program.

TAS 1 "A'" Control Pack requires and uses 400 words of I.A.S. only. Any extra I[.A.S, actually
present will be ignored, although it may be utilized by a programmer with a knowledge of machine
coding, by means of the techniques discussed in Appendix F.

TAS 1 "B" Control Packrequires and uses 800 words of I.A.S., but some knowledge of machine
coding is necessary to set up the object program pack (see Appendix §).

TAS 2, on the other hand, requires a minimum of 800 words of LA.S. if no magnetic tape
processing is to be done, or 1200 if such processing is required. At the same time, if LA.S.
over and above these requirements is available, the TAS program itself may expand into the
extra area (whieh it will use for exira data storage).

(b) The approach to the peripheral units.

TAS 1 uses the L.C.T. PPF-C concept, whereby use of all the peripheral units is time-shared,
whereas TAS 2 is based on the 'sequential’ idea, whereby the use of each peripheral is time-shared
with its associated data distribution routines.

TAS 2 will normally give a more efficient object program than TAS 1. However, the PPF-C
concept will allow TAS 1 "B to show to advantage when more than one peripheral is being used
concurrently, and a suitable input/output ratio exists.

(c) The processing of magnetic tape.
TAS 1 takes no account of magnetic tape processing, but on a machine with 800 words of I.A.S.

or more, standard tape housekeeping routines may be incorporated, as explained in Appendices
F and G.

TAS 2 includes macros to handle magnetic tape on machines with a minimum of 1200 words of
I.A.S.

To sum up, the main advantages of TAS 2 are that certain restrictions on TAS 1 do not apply”
so strictly, or at all; the utilization of I.A.S. is maximised; a much larger control routine is held
in I.A.S.; and, when magnetic tape is being used, the program and data assembly and storage is
automatic. These result in greatly increased object program efficiency, and will also make the
program easier and faster to write. :

2 3175(2.65)

TAS MANUAL CHAPTER 1

LAYOUT OF MANUAL 1.3

The manual has been laid out so as to keep all consideration of magnetic tape processing completely
separate. Thus, the considerations of data, input and output, and programming in TAS given in
Chapters 2, 3 and 4 respectively, all apply to 'card machine’ data processing; although all that is said
here will also be relevant for users of magnetic tape.

Unless otherwise indicated, all information, rules, restrictions etc. given are common to both TAS 1
and TAS 2. Where discrepancies do exist, they are clearly indicated.

Chapter 5, 'Magnetic Tape’, is divided into sections corresponding to the three divisions of the 'card
machine' description. This chapter is, of course, relevant only to users with a machine of at least
1200 words of LA.S. It may be completely ignored by all others.

Chapters 2, 3, 4 and 5 are all concerned with the actual writing of the TAS 'basic English' source
program. Chapter 6, 'Using TAS', is a complete general description of the procedure to be followed
from this original writing of the source program, through compilation, to object program debugging.
It contains a discussion of the aids to source and object program correction and understanding given
by the compiler program, and also a general description of the layout of the object program in the
machine.

Finally, there is a set of Appendices, each of which deals with a specialized aspect of TAS, The
reader would be well advised not to concern himself with them (unless specifically advised to do so, as
he will be with Appendix H) until he has completed his study of the main bulk of the manual.

3175(2.65) 3

Chapter 2

DATA
DESCRIPTION

TABLES 2.1

TAS allows the user to treat the 1301 as a single-level-store machine. To do this however, it
needs certain information concerning data storage.

The user has control over which sections of data are to be stored on the drum, and which in
I.A.S. As LA.S. data storage is limited, lengthy or extremely infrequently used data may have to be
held on the drum, in the form of TABLES.

The first information the user must give the compiler is which data is to be treated in this fashion.
This he does by specifying the name and length of each Table on special sheets. This enables the
compiler firstly to allocate appropriate drum storage for each Table, and secondly to create a
reference list from which it may distinguish between drum-stored and I A.S.-stored data. (Once
it has been given the information with which to create this list, and has passed to the next stage of
compilation, it will regard any new name encountered as that of an LA.S.-stored FIELD.)

From this point on, throughout the program, further references may be made to any Table
merely by mentioning the name it has been given, in exactly the same fashion as for any other type
of data. For this reason it is not possible to use the same name both for an I.A.S. Field and for a
Table, as the compiler will fail to recognise the I.A,S, Field as a different piece of data, and will
treat all references to it as being references to the previously defined Table of the same name.

The format of the special sheets is shown in Appendix H. Each Table is defined on a separate
line, and each line represents one Table Card in the source program. Notice that the words TABLE,
NAME, ITEMS and LENGTH (preprinted on the form) appear on the first line only, and need be
punched only in the first Table Card.

In the column headed 'Name of Table' is written the unique alphabetic name chosen by the user
for the Table. This name must comply with the rules set out in Appendix A. |

It is normal to break a Table down into smaller word groups, or records, of equal length. These
are known as ITEMS, and the size of a TAS Table is defined by specifying the number of Items it
contains and the length in machine words of each Item. Any Table may contain up to 999 Items, and
each Item in any given Table may be up to 99 machine words in length.

Example:
Des Name of Number of Length of
12]3 M5 Table 21 27 ltems 33 39 ltem 44
01|TABLE HNAME HEADER|I TEMS 20|LENGTH I

| el B8 9 - p oF) Loole 0SB 8 ERE] O | B O A I T | | S
01 PAY RL L 342 7

O O O [|

01 KSNe&S 342 1 |
L1 | | £ L e | T O O i
1 — 1 o pom [B [

This will cause the compiler to allocate three areas of storage on the drum, the first of 20
words, the sccond of 2394 (rounded up to 2400) words, and the last of 342 (rounded up to 350) words.

From now on it is possible in the program to reference any Item in a Table directly as
'TABLE a ITEM.. ... nnn', and the compiler will create a correct reference to the starting address of

3175(2.65) 5

TAS MANUAL CHAPTER 2

FIELDS ‘ 2.2
FIELD Names are given to those pieces of data stored in the ILA.S. They must comply with the
rules in Appendix A.

As mentioned above, all new names appearing once the Tables have been defined are automatically
taken to be those of Fields, and therefore no separate definition of these is necessary. The compiler
merely allocates I.A.S. storage to each as it encounters it, either in the Input and Output Formats
described below, or in the general procedure section of the program.

A Field is allocated storage appropriate to the source program statements in which it appears.
Thus if a statement reads:-

'MOVE (the contents of) 5 (words of I.A.S.) FROM A TO B’

the compiler will check that each of A and B has 5 words allocated to it, whereas had the instruction
read

'MOVE 1 FROM A TO B’
then the compiler would have checked only that each Field had one word allocated to it.

The actual method of storage allocation by the compiler is somewhat involved. The user is ad-
vised to study Appendix P on this subject after making himself fully familiar with the main principles
of TAS, but before actually proceeding to write programs.

The Total Storage allocated to all Fields in TAS 2 is dictated by the size of the machine, all
I.A.S. remaining after a fixed allocation for program being given over to this purpose. In TAS 1 the
area is not expandable but is fixed at 158 words.

In both TAS 1 and TAS 2, the area not needed for Field storage is not otherwise used.

As with Tables, Fields may be Itemized, but with an important difference: Field Items are
always one word in length, and may not be defined as greater by the programmer.

Thus: if 'A' is at word 'x’, then 'A Item 2" is at 'x + 1', 'A Item 3' at 'x + 2', and so on.

The contents of all Fields are at zerc when the object program is first entered.

3175(2.65) i

TAS MANUAL CHAPTER 2

WORKING STORES 2.3

In addition to the Fields, it is possible during the procedure section (but not in Input or Qutput
Formats) to refer to ten consecutively located I.A.S. words, known as "WORKING STORES' and named
'WS..01' to 'WS..10".

These stores are zeroized every time a block of program (see below, 4.2) is entered or left,
and for this reason may not be used to carry information from one block to another, nor even to hold
information in one block during the use of another. The only exception to this occurs when exit is
made to a Global or Library Subroutine (see below, 4.6) when the state of the Stores will be preserved
and restored on re-entry.

These Working Stores form an integral part of each block, and are always present, whether
used or not.

CONSTANTS 2.4

Finally, TAS allows the specification of constants in the procedure section. It is in connection
with arithmetic operations that constants are generally required, and it is in this type of instruction
that their use is permitted.

It will be shown, as each instruction is dealt with, how one may directly reference a constant
rather than a Field, Table, or Working Store, by writing its sign (+ or -) followed by the eleven
digit constant required. As with Working Stores, constants, which are one machine word in length,
are stored with the block of program in which they appear, TAS ensuring that no constant is stored
twice with any one block. Up to 100 different constants may be used in any one block.

Although constants may be used freely, they may not be altered or updated in any way; their
values remain fixed throughout the program. Should an alterable constant be required it must be
set up as a Field or Working Store.

A negative reference to a constant causes its complement to be stored. Thus '"*..... 1 and
"—veees .eeeo 1 are different constants. A constant of Zero may not be referenced. Should one be
required, use can be made of a previously unused Working Store or Field.

In 'Sterling’ instructions, only positive constants may be used. Negative sterling constants
cannot be created.

8 3175(2.65)

Chapter 3

INPUT AND OUTPUT

Card and Line Printer Formats

For data, both Input and Qutput, TAS provides completely automatic distribution to and from the

1.A.S. Fields. To enable the compiler to supply the control with the information necessary for this,
the programmer must describe the FORMAT, or layout, of each different type of card read or punched
and type of line printed. This is done by means of a series of 'keys' which are set out by the
programmer on special FORMAT SHEETS (see Appendix H). Each group of five lines represents

one source program Format Card.

INPUT CARDS 3.1
The fact that the format being described is that of a card to be read in, is shown by writing in the
TYPE Column:

'DESn..", where n represents the designation (in the range 0 to 15 in TAS 2, 0to 9in TAS 1, punched
in one column) of the particular card being described. It is standard practice for this designation to
be punched in column 80 of the data card, but it may be punched in any other if so desired (see
Appendix E).

Starting on the same line, in the column headed KEY, the description key of the first field of the card
is written, and again, on the same line, the name chosen for that card field. This name must be that
of an I.A.S. Field (not a Table or Working Store) and may not be Itemized.

Subsequent keys and names are written on subsequent consecutive lines.

The card must be described completely, starting from Column 1, and all 80 card columns must be
accounted for.

At object program running time Alpha fields input are right justified.
Keys
Each KEY consists of five POSITIONS.

Position | defines the type of information within the card field

A = Alphabetic (both zones and numerics required)

D = Denary (numerics only)
S = Sterling (numerics only)
I = Ignore (irrelevant information:or blank columns not to be distributed into the LA.S.

Fields. These card fields are not given names.)

Pasitions 2 and 3 comprise one section of the key, and show the number of card columns
occupied by the Field. (The number is right justified. Four = 04 not 4.; 4. = 40 = Forty.)

Position 4 (preprinted on the sheets) contains "/". It should be punched only when
Position 5 is used.

3175(2.65) 9

TAS MANUAL CHAPTER 3

Position 5 is used only when the field is Alphabetic, when it must show the number of machine
words needed in I.A.S. to contain the field. The TAS 2 compiler stores alphabetic information in
the form 6 zones, 6 numerics, in single words. So the number of words required to store any
particular Field = 15 where n is the number of card columns occupied by the Field. The result
must, obviously, be rounded up to the next whole number if necessary. TAS 1 stores alphabetic
information 127, 12N, in pairs of words; and so the result obtained from the above formula must
be rounded up, if necessary, to the next whole even number.

Since it is possible to describe only five card fields on each TAS Format Card, it is necessary to
repeat the information in the Type column at every fifth key. Each new Input Card description must
commence a new TAS Format Card.

A Sterling or Denary card field may not exceed eleven card columns in length (one I,A,S. word when
distributed), nor may an Alphabetic field exceed 60 columns (10 LA .S, words) in TAS 2, or 48 (8 L.A.S.
words) in TAS 1. A maximum of 40 (TAS 2) or 30 (TAS 1) fields may be described for any one input
card format.

Example:
DES TYPE KEY FIELD NAME | CARD No.
1 213 i COLS 69-74
R 7
y T/ ¥ <
|DES 1, AT OI 2 1\IAIMI E) Name of part
106 i1
D 10,7, | [REF N& Reference Number
S]i!lI/I ; P[R,I [CIEI Price of part
E\l\?l Lo Lo i | o O |
03 = I
, |DE S, Dli l! 5 j 51T49|C1Kf Current Stock
D08 / R DLEV Re-order level
T L | I
I \0 1; L1} { S [S|
TR N I T N
MLI—_;__—-——._—"—"_‘__

The designation of the card may be 'Ignored' in distribution, even if its value is to be tested, since
the testing is an optional facility of the READ verb (see 4.7.14), on which the distribution routines
generated by these formats have no bearing.

It is not necessary to specify Input Formats, if no cards are to be read in.

OUTPUT CARDS AND LINES 3.2

For these the Type column contains either 'LINEnn'" or "CARDnn' as appropriate, where nn is the code
number allocated by the programmer to the particular format being described. When printing or
punching, the particular format desired to be output is then specified. It should be remembered that
the number of a CARD format need have no connection with the designation actually punched into that
card (which will be described as a field). It is merely for referencing the format description.

Every format number must be unique: a CARD and a LINE may not have the same number. LINE
formats, if any, should precede those of CARDS.

10 3175(2.65)

TAS MANUAL CHAPTER 3

In TAS 2, up to thirty different output formats may be described (1<nn<30). Like Input Formats,
these may be presented to the compiler in any order, and the code numbers need form no consecutive
sequence.

TAS 1, on the other hand, has a limit of 20 different formats, which must be presented to the
compiler in format number order. These numbers must start at 01 and rise in increments of one.
Every TAS 1 source program must contain at least one output format.

As in the case of input cards, the fields on each different line to be printed, or card to be punched,
must be described by keys. These keys are similar to those of the input formats in type, but are
nof identical in use. For instance, it is necessary to describe only those fields which are to be
printed or punched, TAS arranging for the remainder of the line or card to be left blank. Names
allocated to fields must again be those of 1.A.S. Fields, and not Itemized.

Keys

Position | Only three different keys are needed to define the types of information output, viz:
A = Alphabetic
D = Denary
S = Sterling

Positions 2 and 3 represent the card column or position in the line of print in which the least
significant character of a field is to appear. Position 2 may vary between 0 and 12 written in

a single column and position 3 between 0 and 9, thus allowing all 120 positions on a line to be
defined. Print positions are numbered 1 to 120 from left to right across the printed page, Card
columns from 1 to 80 across the card.

Position 4 (preprinted) contains "/, but again should be punched only when Position 5 is present.

Position 5 has a variety of uses depending upon the type of key in Position 1.

When Position 1 = A (Alphabetic Type), Position b represents the number of machine words
occupied by the field, as in the case of input format keys. (Again the maximum is 10, representing |
60 characters.) The data will be accepted as being in the form 67, 6N for TAS 2, or 12Z, 12N
for TAS 1; alpha constants must be in the appropriate form.

When Position 1 = D (Denary Type), Position 5 represents the number of digits after the

decimal point (this is used only in LINE formats as no decimal point is ever punched). If its
value is non-zero, a decimal point is automatically inserted into the line of print, and the integers
are shifted one place to the left; no decimal point will be printed if the position is zero or blank.

Finally, when Position 1 = S (Sterling Type), Position 5 specifies the number of decimal places
of pence. If the value is non-zero, a decimal point is automatically inserted into the line of print,
and the integers are shifted one place to the left.

There is, of course, no restriction on punching out denary or sterling fields which contain
decimal places, but no special action on them will be taken. They will merely be output digit
for digit. In all cases, a printed sterling value will be expanded to the left with a single space
between the pounds and shillings and between the shillings and pence; no '£' sign is printed.

e.g. The sterling constant 000, 213, 095, 142 is printed:
213 9 5.142 if Position 5 is equal to 3
and 213095 14 2 if Position 5 is zero or blank.
If a printed sterling value should be less than one shilling, then a zero will be printed in the
digit shilling position. Hence, if it is known that a certain sterling field will never be more

than 11d, and suppression of the zero in the shilling position is required, the field should be
defined and treated as an alphabetic one.

3175(2.65) 11

TAS MANUAL CHAPTER 3

In all cases of denary and sterling values, non-significant zeros are suppressed to the unit

integer. The complement of any negative number presented is automatically output, but its sign is
not created. There is, of course, nothing to prevent the TAS user from creating the sign himself,
provided it is allowed for in the format description as a separate character.

Example:

DES TYPE KEY FIELD NAME | CARD No.

1 213 8 COLS 69-74

03 ¢ i il / t 50 3

L INEO4)A 1077 2 INAME Name of part

D‘Z‘f)“/l | |REF NE Reference number
S ‘3‘?{/1 it P‘Rll ‘C‘EI Price of part
De l6{/1 L I8, T8CK, Current Stock
D‘?‘4‘/| e'tRIDJL‘EIV Re-order Level

03 ,
LINEO4 D‘Ll‘é‘/l_’:l AV GE | Average (3 decimal places)

. — 1 1 —~ -

(Notice that the first five fields described are identical as to name, type, and position with those in
the 'Input' example given above.)

In TAS 2, any particular LA.S. Field may be output any number of times in any output format. The
Fields may be defined in any order, since their relative positions as output are determined by the 2nd
and 3rd Positions of their respective keys. A maximum of 29 fields may be described in any one
output format, '

In TAS 1, any particular I.A.S. Field may be output only once in any one format (but in any number

of different formats). The order of the keys is also significant. Fields in any one output format
must appear in the order in which they have already been presented to the compiler, in Input formats,
or in previously deseribed Output formats. A maximum of 15 fields may be described in any one
output format.

12 3175(2.65)

Chapter 4

PROCEDURE

The program itself is written on program sheets (see Appendix H) in the form of a series of
different TAS 'verbs' or orders, each of which, together with its object and subsidiary key-words
and their objects, forms an instruction or macro.

In the separate sections on each verb below, the Formats are set out, and variations are dealt
with. All data names of which 'Ttemization' is permissible are marked with an asterisk. The name
of a Field, Table, or Working Store is signified by the word 'Name'.

PROGRAM SHEET LAYOUT 4.1

T AS words like TAS Data Area names have a maximum length of six characters, and the program
sheet has a layout identical to that of the TAS program card. Each line on the sheet may hold one
TAS instruction only, and represents one TAS source program card. Each card field is split into
two portions, representing generally the operator and operand of an instruction or part of an instruction.

BLOCKS | 42

TAS programs are written in blocks, or groups of related instructions, -as are machine-coded
programs. It is the user's responsibility to divide his program into blocks, sized so that the compiled
instructions and their associated constants and Working Stores will not occupy more than 200 machine
words. 50 TAS instructions will usually fit easily into a block, but many more may do so, depending
on the type of instruction.

It is safer to make the blocks comparatively small for an initial compilation, and then extend
them by amalgamation when their sizes are known from the information printed out by the compiler.

Each block of program must be headed by a 'Block Heading Card' defining the limits of that block:

TITLE

Desj Label Field 'A’ Field 'B'

1 293 9 15 21 27

OA\Z RLeck e, L, o™ b

] —_ I S,
L

where 'L nnn' is the label of the last TAS instruction of the block.

Note: T AS does not transfer control automatically from the last instruction of a block to the first
of the next. The last instruction of each block must therefore be itself a control transfer
instruction of some type, either to another block or back into the present one.

3175(2.65) 13

TAS MANUAL CHAPTER 4

LABELS 4.3

Instructions in TAS are not sequentially numbered, as they are in machine code.

Any instruction which is to be referred to elsewhere in the program, either as the object of a.
control transfer or of modification, must therefore be labelled. A label is written in the 'Label’
column of the program sheet, as 'L nnn', where nnn is the number of the label in question. Tabel
numbers may range between 0 and 999, may appear randomly (and need not form a consecutive
sequence even if listed in ascending order), but each must be unique. Label O must be used to repre-
sent the initial entry point of the object program, but need not be the first label of the first block.

The last TAS instruction of each block, since it is referenced on the 'Block Heading Card', must
also be labelled. In addition, the final instruction of a subroutine must be given the special label
'ENDSUB'. This will be more fully dealt with in the section on Subroutines.

STERLING 4.4

As the 1301 is capable of operating directly in sterling, facilities have been provided in TAS to
retain this feature with those verbs to which it is appropriate.

To qualify an instruction so that sterling rather than decimal arithmetic will take place, it is
necessary only to place a '€' sign in position 5 of card field 'A'.

It is also possible to set the Sterling Position Register of the machine (which controls the 10/-
position during sterling arithmetic) if so desired, before entering a sterling instruction. This is
done by following the '£' sign described above by the 10/- position desired.

e.g. "LOADRI0' etc will cause sterling arithmetic in the instruction, with the '10/-' in digit
10 (i.e. no decimal places of pence), whereas

'SUM . £6' ete will cause sterling arithmetic with the '10/-' in digit 6 (i.e. four decimal
places of pence).

It is possible to set the Sterling Position Register to any digit between 2 and 12. It is not poss-
ible to set it to 1, and setting 0 will have no effect, being ignored by the compiler as if the position
had been left blank.

Once set to a particular place, the sterling position register remains fixed until reset. The only
TAS Instructions which may reset the register, without a specific instruction to do so being given by
the programmer, are the "PRINT' and 'PUNCH' verbs. Care should be taken to reset the register
after a '"PRINT' or 'PUNCH’ instruction before performing sterling arithmetic.

‘PRES’ 4.5

'"PRES' is the name given in TAS to the acecumulator of a 1300 Series machine i.e., to Register B.
It may be referenced in many (but not all) instructions in place of the name of a data storage area.
Thus, while '"CLEAR VALUE' would zeroize the data area 'VALUE', 'CLEAR PRES' would zeroize
the accumulator. This will be made clearer when certain of the verbs themselves and their formats
are discussed; as will also the restrictions on the referencing of 'PRES'.

14 3175(2.65)

TAS MANUAL CHAPTER 4

SUBROUTINES 4.6

It may become necessary during the flow charting of a program to make one particular section
or routine available to various parts of the whole routine. This is done by treating the section as a
'subroutine' which, when control is transferred to it, will store a 'link’', through which it will return
finally to the next sequential instruction of the main program.

Subroutines in TAS have control transferred to them by means of the 'OBEY' verb, and discussion
of them in detail will be delayed until we come to consider this verb.

VERBS AND INSTRUCTIONS 4.7

The verbs described in this section fall into five groups according to their uses:
(a) Program Control and Organisation:
STOP, GO TO, COMPare, TEST, and TURN.
(b) Calculation:

CLEAR, LOAD, SUM, MULTiply, and DIVide. All perform single-word (eleven-digit) length
arithmetic, and all except SUM affect only the single data word specified in each card field.

(¢) Data Control and Organisation:

PACK, MASK, SHIFT, and MOVE. Again all except MOVE affect only the single word
referenced in each card field.

(d) Input and Output Macros:
READ, PRINT, and PUNCH.
(e) 'Facility' Macros:
MODIFY, 1301, OBEY, and RENAME.

(The sixth group, the Magnetic Tape Macros, applicable to TAS 2 only, are discussed in Chapter 5).

3175(2.65) 15

16

TAS MANUAL

STOP

CHAPTER 4

4.7.1

This is inserted at any point in the program at which it is required to stop the computer.

The basic format is

TITLE)
Des| Label Field 'A’

1 2]3 9 15

O30 1 BTEP pn,mn
g SR,

The number 'nnnn' will be displayed in Control Register 3 when the computer has stopped.
nnnn must be within the limits 2001 to 3999.

Resume

If it is required to restart, after a stop, at an instruction other than the next in sequence, the

keyword 'RESUME' must be entered in the first half of field B.

will be transferred at once to the label specified in the second half of field B,

Example
TITLE
Des| Label Field A’ TField "B’
123 9 15 21 27
0\5 (0 O OO O | S\T\-e‘PI 1 L 1315\0.\ORIE[S|UEIVIIEL1 L l9|9\9
— T T T

When Start is pressed, control

A numbered label must be used. It is not possible to resume at the special label '"ENDSUB'.

3175(2.65)

TAS MANUAL CHAPTER 4

—
GO TO 4,7.2
Instructions are normally obeyed in physical sequence. This verb is used to transfer control
unconditionally from one point in the program to another not in sequence.
TITLE \
Des{ Label Field 'A'
1 243 9 15
0F5 [) T N) C’I'e'l ITfe] Ll | Inv‘nln
e —— St
Within a subroutine the special label 'ENDSUB' is an acceptable alternative to a numbered label.
Also within a subroutine the special form
- TITLE
Des| Label Field 'A'
1283 3 15
058 v v v IGE (TG |LIINEK
~ F——— T e e
may be used to cause an immediate exit from the subroutine.
Runout
There is also a special form of this verb, best thought of as a completely sepai'ate verh., TItis
TITLE)
Des| Label Field 'A’ }
1213 9 15
050 v G T [RIUG Nenm‘\
I I U

231
and causes the print buffer to be emptied,and 200 (TAS 1) or 199 (TAS 2) lines of paper to be spaced.
This instruction must appear at least once in any program in which printing has occurred, between
the last print instruction and the final stop. It is advisable to make it the last instruction before the
final stop, to avoid errors arising from additional output instructions being inserted later.

The keyword 'RUNOUT' may appear only in this verb and in this fixed format. It is nor a label,
and may not be used as such.

3175(2.65) 17

TAS MANUAL CHAPTER 4

COMPare 4.7.3

This verb is used to transfer control to different points in a program, conditional upon different
results of a comparison between two quantities.

The standard format is

Field 'A’ Field 'B' Field 'C' Field 'D’ Field 'E’
9 15 21 27 33 39 45 .5 57 63
CeMP, | pame A WITH pameB IMEGRE L, nnplEQUAL [, , ppplLESS, L , g.44d
PRES
e R e Ve | L1 | T B shede g) | [| | P § Ll e | ¢ SN A S | L 1 B N I | T SO SO 05] I | I O 1 | RS [A O |
— T -~ o S

e

(When the COMP. occurs within a subroutine, 'LINK' and '"ENDSUB' are acceptable alternatives
to the numbered labels shown in the format.)

If the data to be compared are sterling, the '£' sign must be inserted, and also the 10/- position
if necessary (see 4.4 above), 'PRES’ is an acceptable alternative to name A, but not to name B.

It is possible to compare directly with any constant other than Zero. In this case the format

becomes

Des| Label Field 'A' Field 'B' Field 'C" Fiel(}
1 203 9 15 21 27 33 39 45

05

i
L [CEMP, | npme A |-pnnnnp hnnn noMERE | L pnplE OUATL,

Ifllllllll[plP{IEESIIillll[Illl lFlllllll'\IlLJlﬂ
— e

e

S 95
Subject to these minor variations, the format is fixed. The three conditions MORE, EQUAL,

LESS must always appear with their associated labels. One may not be omitted because it is of no
interest to the programmer, nor even because it is an impossibility that it should ever occur.

Control will be transferred, on any particular occasion, to the destination specified with the
condition that is true on that occasion. Notice that the conditions refer to name A as compared

with name B.
Any two, but not all three, of the specified destinations may be identical. Should one of the

destinations be the next instruction in sequence, then that instruction must be labelled and specified
in the normal way.

Modification

Data area names in this instruction may not be modified under any circumstances.

18 3175(2.65)

TAS MANUAL CHAPTER 4

TEST ’ 4.7.4

This verb is used to transfer control dependent on the state of one of the indicators available to
the programmer. These are the nine program indicators 10-18 (the state of which the programmer
may himself control by means of the "TURN' verb); the nine manual indicators 20-28, over which the
programmer also has control; and the three 'mill' indicators 'POS' (positive), 'NEG' (negative), and
'"ZERO', which are turned on and off automatically according to the result of each arithmetic operation
as it passes through the mill. (It isalso possible to test "OVERFL' (Overflow), but see the note below).

The format is:

TITLE

Des| Label Field 'A’ Field 'B’ Field 'C’

1 243 9 15 21 27 33 39

O5) v v v W TEST 4 | v mmfSIET ¢y Ly pnnfUNSET |1, pmn
| I O O | S S R 0 Plelsl | N) Y (: LilNlK! l {1 O | LIINIK 1
! | T | N | NIEI Gl Ll [T - EIN\DlsrU\B I I E! NDI SIU;B
1 ¥ R L) D L { PR 0 P | ZlER‘la 1 { FS VS [() | {0 VO O | fote ol JEA { T ISR [0 O |
1 1 1 I 1 1] 1 1 1 1 E}!V, ER‘IFII 1 1 il i1 1 I L I 1 1 1 1 i 1 1 1 I 1

L o e

Note that control may be transferred to LINK or ENDSUB only within a subroutine.

The Test for 'SET' must always be present, but the Test for 'UNSET' in card field C may be
omitted, in which case the program will continue to the next instruction in sequence on those occasions
when the indicator is not set.

Note:

'OVERFL' becomes set when the result of an arithmetic operation exceeds eleven digits. However,
although it is turned on automatically, like 'POS', 'NEG', and 'ZERQ", it can only be turned off by
testing. For this reason,it is necessary to '"TEST OVERFL' both before and after any operation for
which this condition is significant.

3175(2.65) 19

TAS MANUAL CHAPTER 4

TURN 4.7.5

The programmer may control the state of the nine 'program indicators' numbered 10 to 18. This
verb is used for the purpose.

The basic format is

Des| Label Field 'A' Fiel
1 2)3 9 15 21
0|5 L1 TIUIR'INI L Ll ‘n‘n QLNAIALI)
o F F
1 § T [Lot B | § S LS Y IS { I JE (I I | Nl 0 O
I TR B T N T | 'annEvRu i
—t——

where 'nn' is the number of the indicator in question. 'TURN nn OVER' will turn 'nn' on if previously

off, and off if previously on.

(Notice that the words 'SET' and 'UNSET" are in no way connected with this verb. They are

keywords of the verb '"TEST'.)

This alteration in state can be made conditional on the truth of a proposition.
format is extended to

In this case the

Des| Label Field 'A' Field 'B' Field 'C’ Field 'D'
1 293 9 15 21 27 33 39 45 51
05 TU RN np G N IF name AHMORE |name B¥
1 | S G W, (W | Bl I el i | I (O] O | |] N | {] B P O | © T S PO, N | 100 ! i e ¢ il T S | i] S L
1 Bicoten i oy Y R | | B I I RS eIE‘ IF‘I 11 A I N A | I N T]':)IRLE!S 1t E\QIUKA'!Li 55 (il S, B
1 I) O Y) { S P L { BT A LT (0} QV IEIR 1 1 F I O I | L 1} L1 1) IﬂErS‘J S\ 1 I
— T —— ——————— T T T T
PRES is an acceptable alternative to name A, but not to name B.
Either, but not both, names may be Itemized e.g.:
Field 'A’ Field 'B’ Field 'C" TField 'D' Field 'E'
15 21 27 33 39 45 51 57 63
TORN, |0 L0FONy g0y LE A i TEM oy JUIMERE (B
TUJRINI i | B | |] ‘5 ‘Q‘F,FI 11 L 11 i rFl | T A1 I I MGIRIEI ! B| 11 | 1] lTlEMl { T | ll |0
e e I e —— e
It is possible to make a direct comparison with a constant, but in this case there can be no
Itemization. The format is
Field 'A’ Field 'B' Field 'C’ Field 'D’ Field 'E’
15 21 E 33 39 45 51 57 63
TURN n n &SN IF n ameA |[MORE tnnnnninnnn on
) O Y 3 ¢ N T | | | 111 | | T I | | 111 1 1 k= 1 1 § I N |
0 G N 1O B][5 19O I‘GYIF\ VF‘I bl N O R OO I O | PIR\EiSl 1 EIQIUAILI T DO RN T | | 0 Y 9 L 1 T
IOV ER L E SS
I T | | RN N I TN LIS il VRN Lol R 1 ey ol | TN T 1 i il AR | f o e [S L a5t X N S | T I N S |
o PP o Wy ﬁmﬁm PEREES . BEU . N P P N
20 3175(2.65)

TAS MANUAL CHAPTER 4

As with the COMPare function, it is name A4 which is referred to as being MORE, EQUAL, or
LESS than the name or constant with which it is compared.

Sterling

If the guantities compared be sterling, the '£' sign, and the 10/- position, if necessary, are
inserted in the appropriate position.

Modification

Data area names in this instruction may be modified.

3175(11.63)

21

TAS MA

CLEAR

This verb zeroizes the first word only of the area specified.

NUAL

Des| Label Field 'A’

1213 15

0|5 | S o o T | C;IIJI]ZIIALWRI 1PI.IELIII)IE I‘Axﬁ=
L ——————

CHAPTER 4

4.7.6

By means of the subsidiary keyword 'AND' several words may be cleared in one instruction, e.g.

Des| Label Field 'A' Field 'B' Field 'C' Field 'D'

1 243 9 15 21 27 33 39 45 51

OI5 | PN 0 IO N | Cl]"ll}z\PiIl:{l AI | O | A}NIDI el {1 I) I IT\EIM ! 5001 W | IZIE’ AlNl]:)l [C\ | I T I |

B e N T e e e ——— b e o
Note: To clear large areas it is usually simpler to enter '1301"' (see 4.7.19 below) and then use

'chaining', which is not possible in TAS.

Register B may be zeroized by means of the instruction

Des| Label Field 'A'

1 2§43 9 15

o5, ,,,, IGLEAR |PRES, |
I ——e |

and data areas may be cleared in the same instruction by use of the keyword 'AND'; but PRES may
appear only in field A, as the main object of the verb.

Modification

'CLEAR' may be operated upon by the verb ' MODIFY', but
()

(b) A modified Table Name may not occur in the same CLEAR instruction as one which is not
modified.

No more than four names in one instruction may be modified.

22 3175(2.65)

TAS MANUAL CHAPTER 4

LOAD 4.7.7

This is the basic verb for performing addition and subtraction. Both denary and sterling quantities
can be dealt with., The verb differs from most others in that the format is completely variable.

The effect of the LOAD verb itself is to place in the accumulator the guantity named in the second
half of field A. Operations may then be performed with or upon this quantity using the following
keywords:

(a) Add The contents of the data word named in the second half of the field containing this key are
added to the quantity already in the accumulator.

(b) Sub Similar to (a) but the contents of the named data word are subtracted.

(¢) + or — The constant specified in the following 11 digits which appear across the field containing
one of these signs is added to or subtracted from the quantity in the accumulator.

(d) Add To The quantity at the time in the accumulator is added to the data word named in the
second half of the field.

(e) Sub Fr Similar to (d), but the quantity is subtracted from the data word named.
(f) Result The quantity in the accumulator at the time is transferred to the data word named.

These secondary keywords, with their associated names, may appear in any order across the
whole instruction, except that the last keyword appearing in any LOAD instruction must be ADD TO,
SUB FR, or RESULT. This is nof to say that any one or more of these key words may not appear
anywhere else in the instruction.

Example
Field 'A’ Field 'B' Field 'C' Field 'D' Field 'E’
9 15 21 27 33 39 45 51 57 63
weAD A DD B, DD TeG ISUB L P 3rEr5UIL1TPzR1E15. I
L|eIA|D| JIBRES Loy 8P 5\U|B| FRE Lo JSPORESPTLTE L,
S| —— Y——— — e ——— -

If A=10, B=2, C=3, D=4 and E=50, then the following will occur:

Function contents of -

'PRES| A |B|C |D|E | F
Load f Al 10 |10 2] 3|45 n
Add 1B| 12 |10| 2| 3|4|5]| o
AddTo;C| 12 [10| 2 [15| 4 |50 | n
sb 1D| 8 [10|2|15)4 50| n
+ 20| 28 |10 2 (15| 4 {50]| n
SubFriE| 28 [10| 2 [15] 4 (22| n
- 10| 18 [10f 2|15] 4 22| n
ResultE F| 18 |10| 2|15 4 |22 18

The figures underlined are those which are affected by each Function. Notice how certain keywords
affect PRES but not the data word, while others affect the data word but not PRES. No one keyword
affects both. Notice also that, as "+..... 20" would not have been a legitimate last Function, it was
possible to say 'RESULT PRES' and then 'LOAD PRES', and so continue over one instruction. As
neither affects the data in any way, the compiler will not actually generate any machine instructions
for these two orders. Finally, since the result of a LOAD instruction is always left in PRES, it is
possible to continue a long series of calculations, by commencing each new instruction with 'LOAD PRES"

3175(2.65) 23

TAS MANUAL CHAPTER 4

Itemization

Any name in a Load verb may be itemized:

Field 'A' Field 'B' Field 'C' Field 'D’ Field "E’
15 21 27 33 39 435 51 57 63
ILIGIAIDI 1 & | T | 3 IT IEMi 1 | R) EZW? A IDI]:)[i Z| { 158 f B | ILT I:Elh/ll 1 { [| N | \;Z RWEisiUIL\T YI | PR N P
LﬁQAPI 1 P{REiS (| A!DII)i JTIQW j I I IJTIE'IV'[I | | B e | ’1 I9 AIDiDI Ll .‘N;S'\ 1 1OI4 AD&I]jl J? l’]:‘le q § PN S0 SN
W e meezees ol —

Mill Indicators

LOAD and RESULT do nos affect the mill indicators. All other keywords do, so it is generally
possible to discover the sign of the result of an arithmetic operation by using the verb '"TEST', immed-
iately following the LOAD instruction, to test one of the mill indicators.

Special Forms

(a) Sometimes it is desired to discover the sign of a stored quantity. The simplest way of doing o

this is to call it or its complement to the accumulator in such a way as to affect the mill indicators.
(That is, to perform a 'clear add' or 'clear subtract'.) To do this a special form of the LOAD
verb may be used:

Des| Label Field 'A’ Field 'B'

1 243 9 15 21 27

050 , i AR BRP ame [AL}
1 J O e LA B | I T I N I - -1 S|U|B| 11 | S I I'

___-_—_‘_—__'-q._——_____/'—'h_-——-..____,

(b) To bring a constant into the accumulator initially, another special form of the verb is used

Des| Label Field 'A' Field 'B'
1 203 9 15 21 27
O5 b v BSAD L lln,n]nln,n o, nn, n]n‘rj

(Despite the similarity to the first special form, this does not affect the mill indicators.)
Both these special forms may then continue across fields C, D, and E in the normal fashion. o

(c) TFinally it is possible to increase or decrease the value of a given L.A.S. Field or Working Store
(but not of a Table or PRES) by 1, 2, or 3, by means of a 'condensed’ LOAD instruction:

Des| Label Field 'A' Field 'B'

1 23 9 15 21 27

0580, 4 JLSAD | Lo A DD TEine meA*
1 A e O (B | | B R P A e W SIU[B] JFIR | N I |

— A

where 1=n = 3. This special format is fixed, and no further keywords may follow. Although
it has been designed for use in counting, there is no formal restriction upon its use.

This form does not affect PRES in any way.

Sterling

Sterling arithmetic may be performed in all formats of the LOAD verb, by inserting the '£' sign
in the normal fashion. In a 'condensed' LOAD, the Sterling Position Register setting must be 10.

24 3175(11.63)

TAS MANUAL CHAPTER 4

PRES

PRES may be the object only of the 'LOAD' verb itself, and of the keyword '"RESULT'. It may
not be used after ADD, SUB, ADD TO, or SUB FR.

Modification

Up to four data word names may be modified in any one 'LOAD' instruction.

LOAD Field with literals (TAS 2 only)

This facility is entirely different from all other forms of the LOAD verb in both concept and function.
The format is:

Field 'A” Field 'B' Field 'C’ Field 'D' Field 'E’
9 15 21 27 33 39 45 51 57 63
I&AD nname, | |aaagaalaagaagaiaaaaaalaaagaajagaaag@aadaalaaaaaalaadaag
~— S e ! —

where the name specified may only be that of an T.A.S. Field, and may not be Itemized.

It fills the first 'n' words of the Field with the alphanumeric literals set out in card fields B, C,
D and E. Each half card field represents one word (of six alphanumeric characters) of the I.A.S.
Field and 'n' may lie in the range 1 to 8.

Examples:

Des| Label Field 'A’ Field 'B' Field 'C’ Fiel
1 243 9 15 21 27 33 39 45

058 \ v v I@aD 50% 4 |TAaS, 2, [COMBILIATILON |[PROGRAIM 3,7/ B
C’IS | N N | I--'I'e'IAL-DI I4YI | - ! T N B o | |l,2,?/ IB ii\ |144| N S B | | I I N |

— : e Mo i e T—

In the second example above, the first and fourth words of 1.A.S. Field 'Y' will be loaded with zeros.

By means of this facility the user may create alphanumeric constants as required, thus avoiding
the need for some Tables. All heading lines, for example, could be defined as being of the same
format, and the variable information loaded into the defined 1.A.S. Fields as necessary, before each
PRINT instruction. However, the user is warned that each instruction of this type will create 'n'
constants in the object program block. For this reason discretion is urged in its use.

This instruction affects neither PRES nor the mill indicators. It may not be modified in any way.

3175(2.65) 25

TAS MANUAL CHAPTER 4

SUM 4.7.8

This verb will total up to 50 consecutive words of storage, placing the resultant grand total in the
location specified.

The fixed format is:

Des| Label Field 'A' Field 'B' Field 'C’

1 243 9 15 21 27 33 39

o5 v, SUM |, npFREM | ameA*|RESU L TnameB *
e b by b b by [IPRIBS

|| — |

where 'nn' is the number of words to be added together (2 <<nn <{50), and name A is the first of the
consecutive locations. Either or both location names may be itemized.

Sterling
The verb may operate in sterling, but care should be taken to ensure that the 10/- position of all

words to be summed is the same, and that denary and sterling quantities are not dealt with by the
same instruction.

PRES

The result may be held in PRES, but obviously PRES may not be specified in card field B.

Modification

This verb may not be 'modified’.

26 3175(2.65)

TAS MANUAL CHAPTER 4
MULTiply 479
This instruction has the format:
Des| Label Field 'A' Field 'B' Field 'C' Field 'D'
1 293 15 2 27 33 19 45 51
050, , ,, MULT , mameA*IBY, , mhameB*R ESULT[nameC* 'e;vnErRlll 9 o e)
v b v P v BRES 8y oy L g B PIRIES IR
_____'/-'—‘—'—"'“'_""--—/“'—h-—-——'--————___.__“\-/ L e]

Only one name may be itemized in any one instruction.

The multiplier may be a literal (or constant), in which case the format is slightly altered to

Des| Label Field 'A’ Field 'B' Field 'C' Field 'D'
1 243 15 21 27 33 39 45 51
+ Ia
05{ ,,,, MULT , mpmeA*|l-nnpnnnnnnpp |RESU,L TN ame ,C/* ISV ERLOl , , , 0m
' NI AR RES,; + 1 1111 Eodade g L1 PIRES) [I A
L b *‘K—VL———“/.-“____—————__ J

It is possible to divide automatically the product of a multiplication by a selected power of 10.
For this reason the user must specify, after the keyword 'OVER10', the power of 10°by which he
wants his product divided. Should he not want this facility, 'OVER10" must still be shown , and 'n'

must be set to zero.

Sterling

Sterling multiplication may be performed by inserting the '€’ sign (and the 10/- setting if

necessary).

the multiplicand. The multiplier must always be denary.

The sterling quantity must be that specified in the second half of cardfield A, i.e.

The result of a sterling multiplication will always contain the same number of decimal places
of pence as did the multiplicand.

PRES

The multiplicand and the result, but not the multiplier, may be held in PRES.

Modification

Data word names in this instruction may be modified.

3175(2.65)

27

TAS MANUAL

Divide

CHAPTER 4

4.7.10

The format of this verb is partly variable according to the type of result which is required.

It is possible

to select:

(a) An unrounded quotient, and no remainder (basic format):

Des| Label Field 'A' Field 'B' Field 'C’

1 243 9 15 il 27 33 39

05 , . DIV, |nameAXBY, ,, nameB* R S U LTna me ¥
+

I A S PRIEIS; | -Jnlnlnlntnw L1 IPRES,

Any rwo names may be itemized.

Notice that the divisor may be expressed as a constant, but

may not be PRES.
(b) An unrounded quotient, and a remainder;
Des| Label Field 'A’ Field 'B' Field 'C’ Field 'D’
1 283 15 21 27 33 39 45 51
050, v v DLWy hameAHBRY) InameBeRES U LT meCHREM | naimeD¥
+
v b PRES) fonnnpminnonnnnd o 3 IBRIES) 3 |y 10 PRIES,
— e——— STTEE——

Any ome name may be itemized.

It is not possible to direct RESULT and REM to the same
location. The remainder will always be correctly signed, and, in the case of a sterlingdividend,
will be left as an amount of £.s.d.

(¢) A rounded quotient:
Des{ Label Field 'A’ Field 'B’ Field 'C' Tiel
1 2(3 15 21 37 33 39 45
050 , \ v\ IDT V)) Inpme A B Y, | |njame By RESUILT|nameCrt RGN
+
v b IPRES, f-innpnonmmnmmm) oy 0 o0 [PRES, o § 10
e] e e e e e e~
Any one name may be itemized. The result is rounded to the nearest whole number (or up if the
remainder is exactly half the divisor). The remainder is not available.
Limitation
In a division neither the dividend nor the divisor may exceed eleven digits.
Sterling

A division may be decimal by decimal, sterling by sterling or sterling by decimal, but, in the

case of sterling quantities, the 10/- must always be in digit position 10.

Similarly, denary quantities

are always regarded as integers, so that any scaling required must be carried out by program prior
to obeying the division instruction itself.

Notice that, while it is possible to describe the divisor as a positive or negative constant in the

normal manner, this constant is not permitted to be sterling.

Field B, as well as Field A, must carry a £ sign in position 5.

Modification

Data word names in this instruction may be modified.

Note:
not, and requires

a subroutine.

Finally, if the divisor is sterling,

While MULTiplication is performed by hardware in the 1300 series computers, DIVision is
In addition, in TAS, DIVision requires drum transfers.

For these

reasons multiplication is considerably faster than division, and should always be selected when a
choice between methods exists.

28

3175(2.65)

TAS MANUAL

CHAPTER 4
MASK

4.7.11
This verb performs a 'logical and' whereby only those bits existing in both original data word and
masking constant are present in the final result.

The fixed format is:

Desf Label Field 'A' Field 'B' Field 'C’

' E 9 15 21 27 33 39

05Y) IMASK | nameA pnnnpnnnnmnnn R ESULTn, ameB*

o ooy ko Y Y el L | PleE Fsl] Il T B S | (S O | | | L1 p‘RlEIS ! |
— w__,/_—_\——-._u--——_-_,———l-——-——-/‘

L

The masking constant must be expressed as a literal, which may have any value between 1 and
151515151515 151515151515.

This masking constant is the only exception to the general rule that in
TAS a constant may have a maximum length of eleven digits plus sign.

3175(2.65)

Example
A: 000123 000456

Des Label Field 'A’ Field 'B' Field 'C’
1203 9 15 21 27 33 19

015 | T . M&SKI 1 ‘A‘I | | IELEIQEOIOO\OI4I4I4L4 R'I:I.EISI.['IIL'I'T:Plf{l:E:ISI |

— TR 6 e
A: unchanged
PRES: 000100 000444

This instruction affects the three mill indicators, POS, NEG and ZERQO, which may then be tested
for the sign of the result. OVERFL is not affected.

Modification

In a MASK instruction, only I,A,S, Field names may be modified.

29

TAS MANUAL

PACK

This verb performs a 'logical or’, whereby any bit existing in either original data word is present

in the result.

Example:
PRES = 000000 300456
BITEM 2 = 123000 1000000
Des Label Field 'A’ Field 'B' Field 'C’ Field 'D!
1 293 9 15 1 27 33 39 45 51
050 , , ,, IPACK \, PRES, | IWI,TH, , B+, L, TEM |, 2ARESULTC | 1
D B e 4 .~ —— A T
PRES = 123000 1100456
BITEM 2 = 123000 1000000
C = 123000 1100456
PRES

The fixed format is:

Des| Label Field 'A’ Field 'B’ Field 'C'

1 243 9 15 21 g 33 39

OL5 1]] I | PIAIC’IIQ 1 nlam!elAi*WI iT ;_II L nJa'I]Tf'erBl:)c R'IEIS\UlLtTnla‘lmelCJ*
Lt B P JPIRES g o0 L1 1 L1 [PIRES,

The result of the operation is left in both PRES and name C,

Any two names may be Itemized in any one instruction.

CHAPTER 4

4.7.12

Name A and name B are unchanged.

PRES may not be specified in place of name B, i.e. after '"WITH'.

Modification

30

In a PACK instruction, name A and name B may be modified only if they are I,A.S, Field names;
name C may not be modified. No name may be modified in an instruction beginning 'PACK PRES'.

3175(2.65)

TAS MANUAL CHAPTER 4 1

SHIFT 4.7.13

This causes the digits within a word to be rearranged.

The format is:

Des| Label Field 'A’ Field 'B' Field 'C'
1 23 9 15 21 27 33 39
050, , |, ISHI FT mameA*ILEFT C , | | nnRES ULTnamebBx*
1 | T B I | I I I | PIRIES\ L L'\EIZF\T! | | N T | N I I | PIR\ErSI 1
ot sy RIGHTE i g g b g
1 R ey L] | S B T W | IR) RJIIGII_LTI N s R Y el B | S5 R RS Ry
4 ——a] | l_ -] ——]

where 1 < nn < 12.

The data word on which the operation is to take place is specified in the second half of card
field A. In the first half of the next field is specified, by means of a keyword, the type of rearrange-
ment desired. These keywords, and their effects, are:

(a) LEFT.C ('Left Circulate')

The digits move to the left. As a digit leaves the most significant end of the word it re-
appears in the least significant position, as if the word were an endless chain of twelve links.

(b) LEFT..

The digits again move left, but as each leaves the most significant end of the word it vanishes.
Zeros enter the vacant positions at the least significant end of the word.

(c) RIGHTZ ('Right Zeroize')
Similar to LEFT.., except that the movement is to the right.
(d) RIGHT.

The digits again move right but if the original number is negative, the result will be made
negative by 9's rather than zeros entering at the most significant end.

In the second half of the same card field as the keyword is specified the number of places the
digits are to be moved.

Finally, the keyword 'RESULT' is inserted, followed by the location in which the result is to
be stored.

The contents of name A are not affected by this verb (unless name B =name A).

PRES

Either or both of name A and name B may be replaced by 'PRES'. In any case 'PRES' will
always hold the result.

Modification

Data area names in this instruction may be modified.

3175(2.65) ' 31

TAS MANUAL

CHAPTER 4

Example
A = 012345 67891011
? FUNCTIONS RESULTS
Hache e L, | EeR e Location| Affected Contents
SJ_IIIFITI A’l L1 11 l‘IElF\ITJ rc . 14 RlElslUII"lT B| | e P A PRES Yes 4 5 5 4 8 g 10110 1 zi
A No 012345 6%89io1
S S s A ;19 AR S M | (it U 0 2 | Eohd | Eotodoh | TS TR T
i r 11 E ooyt | GRE Ed BEY O | 3] | 1 Lobop o1 f S SO T ks S B Yes 456489 10110123
SE!IFITI Al 1 P11 11EIF‘!rI‘\ 1 Il Lol 16 Iz1EIS!L}-II"III“A1 | OO S | 1 PRES Yes 6 ; 8 9 1011 0 0 0 o O 0
| AR oA <L O } e e Dok e | T LU e S | I [2 L et T A A ! ol 1T S S ¢ A Yes 64891011 000000
N B No 4567890 10110123
SIHIIEF\ITI PllalES 1 RII IG\H'I; § 1] . 11 RlEISiUI:LIT BI } I T | PRES Yes 9 6 $ 8 9 10 110 0 0 0 0
{ s I R P3| | N A Rty M | TERS U O M | s TP 1 { 0 OO0 ! O ok roy o f A NO 6;891011 000000
: I Whed L IO ¢ | I Ll bl L1 1 L Ll i1 1 i T T B Yes 96;895 EOOOOO
SlHlllF‘lTl PIIQ'EI'SI 1 RRI IGII_IL)I|IE 1 11 1E1 REISIUII{I PIRlElSl 1 PRES Yes 0 0 0 0 0 0 0 0 O 0 0 9
A No 67891011 000000
| I T N N | L 11 I I | P11 L 0] B] R | SR [L [|
B No 96%8910 100000
ST 0 o (S " SR oo SR e | TP VN) et | | 00 O) SO0 A (N O | 3 LT R S R

32

3175(11.63)

TAS MANUAL CHAPTER 4

MOVE 4.7.14

This instruction is used to transfer the contents of an area, or group of successive areas, to
another area or group of areas. Both areas retain their original identities and the contents of the
first are unchanged.

The format (which is fixed) is:

Des|{ Label Field 'A’ Tield 'B' Field 'C'

1 203 9 15 21 27 33 39

0\5 N I | M'@I'V‘E‘; 1] O | & [n FrR\e;M I n!alrr%C[AT“ T\'el T - nL?’JrnLCPA.:
| 0 O Y O R % O [| {) R P O | S 1 3 O | T O S G N [oS OO T O L

“M\M“—M L e, e |

where nn = the number of machine words (up to 50) to be moved. Either or both names may be Itemized.

Note:

(a) This order performs an absolute one-for-one data transfer. The familiar machine code
"chaining' facility is not available.

(b) If both names are those of Tables, then only one word may be moved. In any case, it is
always preferable to perform a move of this nature in 2 stages through an ILA.S. Field or
Working Store.

PRES

PRES may not be referred to at all in this verb.
Modification
This verb may be meodified, subject to the following restrictions:

(a) Only 20 words in TAS 2, or 10 in TAS 1, may be moved.

(b) If Tables are referred to in the transfer only one address may be modified.

3175(2.65) 33

TAS MANUAL

READ

CHAPTER 4

4.7.15

This verb is the input instruction, and may also specify the action to be taken appropriate to the
designation of a card read.

The basic format is

Des| Label Field 'A'

1 2]3 9 15
O\5|\L|rRE1ADJJ_||J<I1
MM‘NM

Note:

read.

This is a 'logical read', presenting cards to the program, and not necessarily a physical
TAS 1, for instance, by its use of PPF-C, will seldom physically read cards singly.

In addition, keywords provide the facility to transfer control if so desired to various points in
the program according to the designation of the card input.

The verb then takes its (optional but usual) extended format:

es| Label Field 'A' Field 'B' Field 'C'

1 243 9 15 21 27 33 39

058 READ |, JIDESD L, nnniDESp, L pnp

 ~— L ——iflrll ~~—l——

Example:

Des| Label Field 'A’ Field 'B’ Field 'C’ Field 'D'

1 243 9 15 21 27 33 39 45 51

05 IR E AD 1|DES4 36 1|DES 6 i 22IDES?9 L 48
VAN N N N N s S T N O VN S N T T T Y M A O T M T I Y AR

e | SRR ST IS P S e e |

If the card input is type 4, control will be transferred to L..361, and so on.

These designations must be specified in ascending order.

An unconditional transfer may be

generated by setting the keyword 'ELSE.." in the field immediately following that containing the
last 'DESn' conditional transfer, together with the label to which control is to be transferred
should none of the individually specified designations occur.

Should the designation of a card input on any particular occasion not be specified, and no "ELSE'
condition be present, the program will merely continue to the next instruction in sequence.

Should more than four transfer instructions be required, the READ verb may be 'continued'.
In field A of the next card is placed 'READ.. CONTD.', and the specification of transfers may then
Further continuations may be made if necessary.

continue uninterrupted.

Example:
Field 'A’ Field 'B' Field 'C' Field 'D’ Field 'E’
9 15 21 27 33 39 45 51 57 63
RJE:lAlDI 1 1 k| R | |1 I)IEJSIO\ L Ll | \4\010 IDLEISfl\ | l‘I L |1i5 '0 QEIS|3f 1 LJ | \2|0|0 DE|S|4L 1 L1 | \6I6!6
RloaD , |[CENTD IDESS, | |I | 500iDES 8, [y | JpoELSE | |1 2500 0l
L — e~ — 1 L—— 1]
3175(2.65)

34

TAS MANUAL CHAPTER 4

Note: It is not necessary to specify in an extended Read order a conditional jump for all DES's
described in input formats. Nor is it necessary in any format to distribute the actual designation
itself, in order to transfer control according to its value.

In TAS 1 however (but not in TAS 2) it is necessary to describe each card type whose designation
is to be used in this fashion. Thus one or more cards may be described as '180'

Moedification

This verb may not be modified.

3175(11.63)

35

TAS MANUAL

PUNCH

CHAPTER 4

4.7.16

- Only one card at a time may be punched out, its format type appearing in the second half of
field B. The second half of field A. must contain the number '1'.

The format is:

Des| Label Field 'A’ Field 'B’

1 2]3 15 g4 27

OIS I I I I | :PIUII\IICII_II B | L1 II 1 | P o e CJA[R\DID hn
— —] —~—

where 01 < nn € 20 in TAS 1 and 01 ¢ nn 30 in TAS 2.

Modification

This verb may not be modified.

36

3175(2.65)

TAS MANUAL CHAPTER 4

PRINT 4.7.17

This verb enables the programmer to output one or more lines on the printer, selecting the format
types from those defined, and also specifying the spacing to be inserted between the lines. It is also
possible to test 'paper trolley empty'. This is normally done before printing the first line of a form
to find if sufficient paper remains in the machine to continue printing.

The verb is written in the first half of field A. In the second half is specified the number of
lines to be printed. A maximum of 10 lines may be printed using a single instruction, up to four of
which may be specified on an instruction card. If more than four lines are called at once, the inst-
ruction is continued on subsequent lines, by repeating the verb PRINT, and placing CONTD ('Continued')
in the second half of field A,(Note - if the TAS 1 "B" Control Pack is to be used, then only one line
at a time may be printed.)

Fields B, C, D and E contain, in the first half, the spacing to occur before the printing of the
line whose format type is specified in the second half. This spacing is written as 'SPnn’' in the first
four characters of a field; up to 99 lines may be spaced before any line. It is possible to space
'zero' (SP00), and thus print two or more Formats on the same line.

The fifth and sixth positions of a field may contain 'PT' should the 'paper trolley empty' test be
required to be carried out after spacing and before printing the line specified in the Field.

Format

Des| Label Field 'A' Field 'B' Field 'C' Field 'D’

1 2h3 9 15 21 27 33 39 45 51

05, ,,, IBRINT |,) nSPan | (LINEan|SPan, | [LINEanletge., | 1
Ll —— e

Example :
Field 'A’ Field 'B’ Field 'C’ Field 'D’ Field 'E’
15 21 27 33 39 45 51 57 63
PIR1I|]'\IIT\ { ESR e 1O} 1; SEPIOIZJ]'DIT]ﬂIll\Ilgoi?’ SIPIOIIi 1 LiI\NrEiOI4 SIPIO\l\ L L]ILNIEJD l;‘ SIP|O\II i LLI INl:Et Oll

PI&I\I\IITI CL‘Q]'\TJTIDI SlPlolél] L?IINEIJS SIPIOI4I L LIINIEZFOSPOZ L‘lIE\!ED ? O 0 |

fEll Rt oy R eV L
| o | — |~]

Modification and Variable Spacing

Variable spacing before a line may be arranged by placing 'SP.VAR' in the first half of the
relevant field, in place of 'SPnn'. This can be regarded as always zero, and is set up to the required
value on each occasion by means of a MODIFY instruction. 'PT' cannot be tested in this case. This
will be fully explained in Section 4.7.18.

With this exception, this verb cannot be modified.
Note:

(@) The spacing is (as it is in machine coding) the distance expressed in lines from one line of print to
the next. It is not the number of clear lines left blank between them, i.e. 'SP0I" will give
printing on consecutive lines, 'SP04' printing on every fourth line, with three lines left clear,
and so on. &

(b) TAS has been so arranged that when the object program is running, it will ignore the very first
spacing requirement it encounters, and print the line in the position to which the paper has been
set by the operator. Should the program subsequently loop back to the same PRINT instruction s
the space requirement will then be treated as normal and spacing will occur.

(¢) The section on 'Runout’ (4.7.2 above) should be noted carefully in connection with the PRINT verb.

3175(2.65) ‘ 37

TAS MANUAL CHAPTER 4

MODIFY 4.7.18

This is the only verb by which program instructions may be altered at object program running
time.

It may operate in two ways:

(a) Firstly it may operate on various other verbs to modify the address of the specified I,A.S,
Field or Table (but not Working Store), by the confents of an 1.A.S, Field or Working Store (but
not of a Table). The format (which is fixed) is:

Des| Label Field 'A' Field 'B' Field 'C’

1 243 9 15 21 27 33 39
G5, MEDIFYnameA [IN |Lonn [zWITH [nameBH
DRI o BN ——— L—]

where z = A, B, C, Dor E and refers to the Card Field of the Instruction 'Lnnn' which is the
object of Modification.

Suppose we have the instruction

Des| Label Field 'A’ Field 'B' Field 'C'

1 243 9 15 21 27 33 39
05, 9.99MEViE [g AIEREM IR 0 TS e A v
Lyt]k —— ——

then if A were located at I.A.S. 300, by modifying A in field C of the MOVE verb, by an LA.S.
Field which contained '5", we could cause the contents of X to be transferred not to 1,A.S. 300
but to 1.A.S. 305. Thus the MODIFY instruction would be:

Des| Label Field 'A’ Field 'B’ Field 'C"

1 2§43 9 15 21 27 33 39

050 , MEDIFYA N 599, 91/ CWITH | ALTER,
e . —_— - e l—]]

The Field named ALTER would hold '5'.

The action taken by the MODIFY verb is known as 'B-Line' modification, whereby the object
instruction in its modified form is created and obeyed but not preserved, so that no demodification
is necessary and the original skeleton object instruction remains constant throughout the program.
Thus in the example we have taken above, 'A' would have the value 300 every time the instruction.
was arrived at; it would not be permanently altered to 305 by the action of our MODIFY verb. This
means that if 'progressive modification' is desired, the modifier itself must be updated either
before or after each occasion on which it is used. These modifiers are often simple counts.

Modification always takes place in terms of machine words, and not in terms of I.A.S. Fields or
Table Items. Particular account of this must be taken when modifying references to Table Names.

(b) Secondly, it is possible to achieve variable spacing by modifying the number of lines to be spaced
in a PRINT Instruction,

Instead of the 'SPnn.." which normally appears, the term 'SP.VAR' is inserted in the appropriate
field of the PRINT Instruction. Then the MODIFY verb merely takes on the format:

Des{ Label Field 'A' Field 'B' Field 'C'

1 243 9 15 21 27 33 39

OIS) e T | VI[GID[I IFAY SIPI IVIAB L tNI B Lvn\nlnll lZ vvll !TIHI L n}'a%’n‘e |Ay*
Ll — e —— —~~ | —

name A holding the number of lines it is desired to space on any particular occasion.

38 _ 3175(2.65)

TAS MANUAL

CHAPTER 4

Various rules and restrictions apply to the MODIFY verb in both the above cases:

(a)

(c)

(d)

PRES

Only data area names, or the special word 'SP.VAR', may be modified.

It is not possible to modify a card field section which appears as a number, e.g. the number
of words to be moved or an Item number. To modify a Table Address, reference is made
to the Table Name, which is usually installed in the MOVE instruction with no qualifying
Item number.

Where an Item number appears in an instruction, it performs a permanent qualification of

the address to which it refers. The modification of that address, which will refer directly
to the name, performs a further temporary modification to the permanently qualified address.
Suppose the object instruction above had read:

Des Label Field 'A’ Field 'B' Field 'C’ Field 'D’

1 243 9 15 21 27 33 39 45 51

015 LI 1 lgtglgM&ViE i A R P | I]- FrRla'M 1 Xi | SO Tfe\ Lo A 1 4T nEM\ 1 { A OO \?
e ———] — |~ | —] . —_—

then the form of the MODIFY verb would be

Des| Label Field 'A’ Field 'B' Field 'C' Field 'D'
1 243 9 15 21 %7 33 39 45 51
05 v MEDIEYIA L JLTEM | DN 0 L9990 CIWIITH . JALTER,

and its effect would be to alter the MOVE so that the contents of X were transferred not to
I.A.S. 306 but to I,A.S, 311. Exactly the same principles apply when Tables are involved.

A MODIFY instruction must occur in the same block as its object and must precede it.
Further, the object instruction may notbe obeyed on any occasion without the instruction mod-
ifying it having been executed. It is impossible to modify an instruction on some occasions
but not on others. Conditional modification may only be achieved by having a modifier which
is conditionally zero. Finally, modification instructions must appear in the same physical
order as the card fields containing the modified names. e.g. L013/B must be modified before
L013/C. Similarly, if L...13 precedes L...10, the instruction modifying 1.013 /C must pre-
cede one modifying L.010/B.

No field in any instruction may be the object of more than one modifier, There is a complete

one-for-one relation between a MODIFY verb and its object.

The label of the object instruction, and the reference to it in the MODIFY verb, must tally
exactly as to punching. A punched zero and a space are not equivalent in this case,

PRES may not be referenced in a MODIFY instruction.

Modification

Data area names in this instruction may themselves be modified.

3175(2.65)

39

TAS MANUAL CHAPTER 4

1301 4.7.19

This verb enables the programmer to include in his TAS program machine-coded instructions.
These may be required to ensure that full efficiency is achieved, or to provide a link between TAS
and large sections of machine coding held outside the I.A.S. area under TAS control (see Appendix F).

The format is completely fixed:

Des| Label Field 'A’
1 243 9 15

015 Eo1.1] | 1I31OIlI L L1 FnlnFl

e e S, S N

where nnn is the number of words of machine coding to be included.

This macro is punched on a TAS card which is immediately followed by normal 1301 relativised
program cards containing the number of words of coding specified. These cards are treated as a
separate section for the purposes of sequence numbering, being given numbers. in column 28,
commencing at 1. o

The instructions are written entirely in machine code as far as Designations and Functions go, but
the six columns allocated for Addresses and Relativisers may be used in any one of three ways:

(a) They may be used in 'absolute' form by referring to locations in the machine by their absolute
addresses.

(b) They may be used in 'relative’ machine code form; but in this case only relativiser 'B’
(referring to locations within the current section of 1301 coding) may be used.

(c) Finally, normal TAS mnemonic references to LLA.S. Fields, Working Stores and labels, may
be used. This means that one may combine the absolute efficiency of machine coding with
the ease of reference of TAS mnemonics. Fields may not, however, be itemized nor may
Tables be referenced, and any label referred to must be in the same TAS bloek, and precede
the instruction referring to it.

Any two or all three of these methods may be used in the same section of 1301 Coding.

Every 1301 verb must be labelled. (Note: This refers to the TAS verb, nof the machine code
instructions themselves.) Control is transferred by means of a verb or verbs referencing this label,
to the first word of the section of 1301 coding. No other entry point is permissible. Control may be
transferred back either by the storing on entry of a link through which exit is made, or by a'400 L..nnn'
instruction (care being taken to comply with the restrictions on this form set out above).

Positive constants in '1301' sections must not be designated. -

Negative constants must be designated 'M', and must be in absolute denary form with a maximum
length of eleven digits.

Zero constants must be designated 'P'.

Any word on a 1301 relativised program card which has been left completely blank will be ignored,
and following words, if any, will be 'blocked up'.

Any number of sections of 1301 may be incorporated in a TAS Block, but they must be taken into
account when calculating its size, which is still restricted to 200 machine words in all. Each section
must be headed by a labelled 1301 Macro.

A 1301 section must be fed in at the end of the TAS block in which it appears. Should more than
one section be present they must follow each other at the end of the block., The last section of 1301
will be headed by 2 '1301 ...nnn' macro as normal, and it is the label of this macro which will be
referenced on the Block Heading Card. No 1301 relativised instruction may be labelled.

It is not possible to have an entire TAS block consisting of nothing but '1301' coding. If this is
wanted, one 'dummy' TAS instruction, which will never be referenced or obeyed, must be placed at the
head of the block. This 'dummy’ instruction would normally be a 'STOP’ (but note that in multj-block
programs at least one 'GO TO' instruction will be required to transfer control to other blocks).

40 3175(2.65)

TAS MANUAL

PRES

PRES may not be referenced in 1301 coding.

Modification

CHAPTER 4

A 1301 macro may not be the object of the MODIFY verb, nor may any 1301 instruction.

Example
I.C.T COMPUTERS
1300 }OB:- BLOCK No.
SERIES Label 827
PROGRAM SHEET No. 1 /
SHEET PROGRAMMER :- ¥ 4
C | D| F A R NARRATIVE
1 32 1# | B
. 2t et BB ;
42 800
6
M -3 LT e -
4lo1| L 4 |32
= 2 b l3Elws .2 .
f R N N
H 42 801
g2
: 3 .._2‘...1 .____-Q ,,,,,,,, S D _ o o .
= 69 18 | B
- 42| ws 1
3 4] el I N . . : -
E
3 4l03 15 | B
: 5 45| ANSW_|ER
o 3 LA L ANSW O AER |]
£ T 01 12 | B
A E 3z wace |
5 £ 6 s e e R e S e
d 4 2 21 | B
2 4loo0| L 24
g 7 e EESEEEE EEEEEEEEH St I - -
8 Bl loea o] om0
S
: A 9 My . - . s
i 47
e

3175(11.63)

41

TAS MANUAL CHAPTER 4

Subroutines and the verb OBEY 4.7.20

The general concept of Subroutines has been discussed in 4.6 above. Subroutines in TAS are
distinguished by the fact that each is headed by a Subroutine Identification Card, bearing the word
'SUB..." in the Label Column, and in the second half of Card Field A a unique identification number.
Like Instruction labels, these numbers must be unique throughout the program. They may, again
like labels, be allocated randomly, except that for each different type of Subroutine in TAS a different
range of numbers must be used. '

Three forms of Subroutine exist in TAS: the Block Subroutine, and the Global Subroutine, both \
written in TAS; and the Library Subroutine, which is written in machine code, and is generally, but }
not necessarily, a standard I.C.T. Subroutine available from the Subroutine Library. 1

Endsub

This is a special label given to the last instruction of each subroutine presented to the compiler.
It is written in the label column of the last instruction: '

Des| Label Field 'A’ Field 'B' Field 'C'

1 243 9 15 21 27 33 39

0, 5{ENDSU BT URN, | EEENE L] =2 fo 1 T T T R T I B
[N E— S R W [—___

It has three functions:

() It informs the compiler that the subroutine has come to an end, just as the label of the last
instruction of a block informs the compiler of the end of that block.

(b) Again like the label of the last instruction of a block, it does, in fact, label the instruction
and may be referenced in other instructions within the subroutine as a normal label. Note
that since there will be one 'ENDSUB' in every subroutine, there may well be more than one
'ENDSUB' in a program. For this reason it is not permitted to reference such a label except
from within the particular subroutine of which it is the last instruction. |

(¢) In a Block subroutine only, it causes the compiler to generate a jump to the subroutine 'Link'.
This jump is stored immediately following the instruction of which 'ENDSUB' is the label.
In a Global subroutine, no automatic jump is generated and there are also certain restrictions
on the '"ENDSUB' instruction itself; these are stated below.

Block Subroutines

If the use of and references to a subroutine fall wholly within a single block of program, then the
TAS-coded Block Subroutine may be used. It forms part of the block from which it is referenced and
must therefore be taken into account when calculating the size of that block.

Up to 20 block subroutines may be included in one block, provided the block maximum size is not
exceeded. They must always be placed at the head of the block in which they appear. All linkage is
taken care of by the compiler, which automatically inserts a transfer of control back to the stored link
after the 'ENDSUB' instruction. ’ |

A Block Subroutine must be allocated an identification number in the range 150-199, the order
being immaterial.

Global Subroutines

Sometimes it is not possible to contain all references to a T AS-coded Subroutine within a single
block, and in this case a Global subroutine must be used. This is treated as a separate block of
program, the Block Heading Card of which contains the word "ENDSUB', instead of a Label Number,
in the second half of field A.

42 3175(2.65)

TAS MANUAL CHAPTER 4

Thereafter it is written in the same form as a Block Subroutine, headed by.a 'SUB’ card, and
the last instruction labelled 'ENDSUB'. It must be given an identification number in the range
200 to 299.

Linkage is taken care of by the compiler, except that the automatic transfer of control back to
the link is not inserted after the 'ENDSUB'. The instruction 'GO TO LINK' must therefore be inserted
by the programmer after the last (logical) instruction.

Important restrictions on Global Subroutines are:

(a) It is not possible to transfer control to a point in a Global Subroutine other than the beginning,
as no LINK will be set, and any set previously will not have been preserved.

(b) Various verbs may not be used. In TAS 2, it is not possible for a Global Subroutine itself to
contain the verb OBEY. In TAS 1, the use of the verbs OBEY, READ, PUNCH and PRINT is
forbidden.

(e) It is not possible to enter or exit from a Global Subroutine with relevant information held in PRES.
The contents of PRES are altered by the control transfer routines.

(d) The "ENDSUB' of a Global Subroutine must be either a 'GO TO" , or a 1301 macro specifying one
word of machine coding. In the latter case, the word itself must be a constant of zero, and must
not be used by the program.

(e) When compiling, Global Subroutines must come after all other blocks.

Library Subroutines

Usually machine-coded subroutines may be handled as sections of '1301" coding, but sometimes
it is unavoidable that a separate block is formed. In this case it must be treated as a 'Library
Subroutine'.

This subroutine will not itself be fed into the compiler with the source program. Instead, it
need merely be referenced, like a Block or Global Subroutine, by the OBEY verb. It must be given
an identification number in the range 300 to 399. :

The subroutine will then be allocated a drum channel, and references to it will cause transfers
of control to word 1 of that channel. The compiler will punch out a card containing the identification
number given by the programmer, together with a 'B' word containing the drum start address allocated.

The programmer will then insert the Subroutine into his compiled object program by placing his
(prepunched) machine-coded pack immediately after this card.

It will also be necessary to insert, immediately before this card, a card setting up any relativisers
required by the Subroutine. The first of these may well be RRN 1, Temporary Storage. This must be
allocated an area between I.LA.S. 0 and I.A.S. 199, i.e. within the block. It must not, of course, be set
s0 as to overwrite any part of the Subroutine, which will itself be stored here, commencing at word 1.

From this it will be clear that it is possible to use this form only for those routines which, with
their associated temporary storage, do not exceed 200 words of LA.S. For those which do, the techniques
suggested by Appendix F will need to be employed.

A more complicated problem may be set by Input and Output parameters. When there is only
one parameter of either type, or when the particular pieces of information with which the routine
is required to deal lie in the I.A.S. both adjacent to each other and in the order required by the routine,
then no difficulty arises. The user merely sets the relativisers to the appropriate absolute addresses
allocated by the compiler to the various Fields, which may be obtained from the Field Names List
print-out.

Unfortunately it is not always convenient or even possible to arrange the L A.S. in this fashion,
and, if this is so, the technigque described below as the extended form of the verb OBEY must he
adopted.

The same restrictions on the contents of PRES during entry and exit apply here as for Global
Subroutines. It may therefore be necessary to make small alterations to certain routines to overcome
this problem. ‘

3175(2.65) " 43

TAS MANUAL CHAPTER 4

OBEY

Control is transferred to a Subroutine by means of this verb, whose basic format is simply:

Des] Label Field 'A’
1 2913 9 15
0!5 V(Y L Ve | BIBIEIYI L S\ULBintnrn

where nnn is the identification number of the Subroutine which it is desired to enter.

This will cause control to be transferred to the beginning of the Subroutine when a link will be
stored. Eventually this link will be entered, and control will be returned to the main program at the
instruction immediately following the verb OBEY.

Notice that the same verb is used in the same way for Block and Global Subroutines. For Library
Subroutines only, however, an extended Format must be used. All Library Subroutines require Input
and Output parameters which must be set under relativisers as detailed in the specification sheets.

To cater for the cases mentioned above, where the I.A.S. cannot be so arranged as to allow the 'direct’
setting of these relativisers, TAS requires the user, when transferring control to a Library Subroutine,
to specify these parameters. The verb therefore takes the extended format:

Des| Label Field 'A’ Field 'B' Field 'C'
1 2§3 9 15 21 27 33 3%
01‘5 1 11 1 1 e‘IBIE:IYI 1 S\‘UIB13pIn IINP \U\T\ n\amleli‘: | 'el‘U\Tlp\UlTnla \rn!el*l

The relevant names are written, in the order required by the subroutine, after each key word. Should
it not be possible to detail all the parameters in this fashion on one line, then the instruction may be
extended over two or more. The verb is repeated in the first half of card field A, in the second half
of which is placed the word CONTD. ('continued'). The specification of parameters then continues as

if there had been no interruption. '

The effect of these specifications will be to cause TAS to arrange a program which will, before
entering the Subroutine, move the contents of the fields specified after 'INPUT" into 1.A.S. locations
390 to 399 (TAS 2) or 395 to 399 (TAS 1) in the order specified. After exiting from the routine,
another program will move the contents of the words 395 to 399 to the locations specified after
'‘OUTPUT".

Notice that if this facility is used:

(a) The programmer must set his Input parameter relativiser to LA.S. 390 (TAS 2) or 395 (TAS 1)
and his Output to 395.

(b) There is a limit of 10 (TAS 2) or 5 (TAS 1) Input parameters, but the last five of both are
overwritten by the Output. There is a limit of 5 Output parameters.

(c) The Keyword 'OUTPUT' and the various names may appear ineither half of any card fieldbut'A'.

(d) Any name may be Itemized, but neither the second half of field E nor the first half of field B
may contain the word ITEM. That is, an Itemized Field must be wholly described on one card.
In order to achieve this, half, or all, of field E may be left blank.

(e) Table names may not be specified.

44 31'75(2.65)

TAS MANUAL CHAPTER 4

If this facility is not used (because both groups of parameters have been set up 'directly’) then
the keywords INPUT and OUTPUT must still appear even though not followed by any field name:

Des Label Field 'A’ Field 'B' Field
1 243 9 15 21 27 33
050 vy s BREY, SUBnan|l NPUT U TPUT

Because the OBEY verb transfers control to the first word of a subroutine and only to the first
word, it may be necessary on occasion to alter an I.C.T.standard subroutine with more than one entry

point,or a single entry point which is not the first word of the routine, to conform to TAS requirements.
Standard subroutines using Indicator 19 will also need to be altered. These are usually simple matters.

Certain Standard Subroutines zeroize output parameters on entry, and others use input parameters
after storing one or more resulis. Care must be taken to program round this if necessary.

Restriction

The verb OBEY may not be used in a Global Subroutine.

Modification

No name in an OBEY instruction may be modified.

Choice of Subroutine Type

When deciding what type of subroutine to use, the programmer should bear in mind the fact that
'OBEY'ing a Block Subroutine (or its machine code equivalent, a section of '1301") involves no drum
transfer as such. On the other hand, 'OBEY'ing Global or Library Subroutines involves three, one to
store the state of the block from which the routine is entered, one to bring the routine to the 1.A.S.,
and one more to restore the original block. It is obvious that if it is possible to avoid these drum
transfers, the result will be a considerably improved object program running speed. It may well be
advantageous to repeat one subroutine several times in different blocks as a Block Subroutine or
Section of 1301, rather than holding it once separately.

3175(2.65) 45

TAS MANUAL CHAPTER 4

RENAME 4.7.21

This is a 'pseudo-verb' which causes no action during the object program. It is designed to
enable the programmer entering a new section of program to re-use I,A.S, Fields which have become
redundant, without being forced to refer to them by names which have lost their significance.

The instruction has the fixed format

Des| Label Field 'A’ Field 'B

1 2943 9 15 21 27

05 ,,,, |RENAMER ameA*JAS , | | [pame B
VJ‘K_//__I/_\/_HM‘-—.—.’-—#

where name A is the obsolete name, and name B the name by which it is desired to refer to the
Field in the future. Name B may not be Itemized.

This instruction is fed in as a normal instruction card of the procedure section; the compiler
will treat all references on subsequent cards to name 'B', as being to the Field formerly referred to

as name 'A'. Note: Should name 'A' be referred to again it will not be recognised and will be
allocated a new address.

There is no limit to the number of times a Field may be renamed, and no reason why it should
not, at some stage, revert to one of its previously discarded 'aliases'.

On the Field Names Directory (see 6.2.2 below) only the name in use at the end of compilation
will be shown.

It is possible to rename only I.A.S. Fields. In addition, this facility may not be used to 'RENAME'
a field originally defined in a Re-defining or Sharing Record (see 5.2.2 and 5.2.3 below).

Modification

As 'RENAME' is not an instruction obeyed at object program running time, it is obvious that no
name mentioned in it may be modified.

46 3175(2.65)

Chapter 5

MAGNETIC
TAPE

Whilst handling Magnetic Tape is in no way difficult, the macros are at a high level, and for this
reason the user would be best advised not to attempt to read this chapter before he has a full working
knowledge of all other aspects of TAS.

A Tape File consists of Records arranged in groups, or 'blocks' on the tape according to.a
standard format (see Appendix M). Any number of different types of Records, of the same or
different lengths, arranged in any order, may go to make up one File.

TAS 2 provides the user with a powerful system for handling tapes. The TAS programmer does
not have to concern himself at all with the problem of the 'physical' handling of tape blocks; he merely
regards his Files as strings of Records. A3 far as he is concerned, the tape verbs perform 'logical’
reads and writes just as the other input/output macros perform 'logical' reads, prints, and punches.

At the same time he retains control over questions of space and speed, and may select batched
or unbatched File and/or Record areas, and a greater or lesser degree of simultaneity in reading
and writing his tapes. However, it should be noted that while read/write overlap may be achieved,
time-sharing between tape transfers and all other processing has, because of the dangers of drum
and tape overlap, been locked out.

This chapter sets out what the user must do to enable the compiler to create the tape handling
system, the system itself, and also ceriain aspects of setting up and running a TAS Tape Program.

TAPE FILE DESCRIPTIONS 5.1

The user must describe each of his Tape Files on the Sheets provided (see Appendix H). Up to
8 different Files may be described.

For any File, the user must describe four things
(a) Whether the File is an 'INPUT' or 'OUTPUT' Tape. No one File may be described as both.

(b) The 'FILE NAME', by which it will be referenced in the program. This must obey the rules
set out in Appendix A, but need not be the name on the Beginning of File Label and Job Set-up
Identity Cards.

(c) The 'LENGTH' in words of the largest physical block on that File. This may vary between
6 and 449, and includes records and the 'Highest Key' word, but excludes the end-of-block
marker. This enables the compiler to allocate I.A.S. storage for the File buffer area. When
so doing, it automatically allocates one extra word for the end-of-block marker, and one
(for an input tape) or two (for an output tape) words for TAS keys (these are for use by the
control, and are not written to tape). The user need concern himself with none of these.

(d) The tape DECK ADDRESS of the File, any single digit in the range 1 to 8. Deck Addresses,
like labels, may be allocated randomly, but only one File may be allocated to any one Deck
Address.

In addition, for each Output File the user must tell the compiler where the 'key word' is to be
found in each record. This is done by writing 'KEY.nn', thus instructing the tape control program
to update the word holding the 'highest key' by the 'nn'th word of each record as it is stored in the
output buffer area. If 'nn' is set at '00*, this will not take place, and the word holding the highest
key will be zeroized.

3175(2.65) 47

TAS MANUAL CHAPTER 5

There are four methods of describing Files, one for each system available to the user. Any or
all may be used for different Files in the same program. They are described in detail below,

Independent Reading (Input File) 5.1.1

This format is used when the user does not wish the control program to time-share the physical
reading of the File described with any physical tape writing.

Des Input or File Block Deck Paosition of
12]3 9 Output [I5 Name 21 27 Length |33 Adadress [39 Keyword
06|F I LE INPUT |n ame LENGTH nnn|DECK x

L I - | T I T | I T | I N | T I |
— A e]

Allocated Buffer Area

TAS Key 1 word
Highest Key
R
Defined
______ E_____
c
0} n nn words
______ R ____.
D
S
|E. of B. Marker 1 word
Example:
Des Input or File Block Deck Position of
1213 9 OQutput [I5 Name 21 27 Length |33 Address [39 Keyword
0 6/F I LE INPUT [MAINFLILENGTH 200pECK 2
| S S N N N N N T AN T N Y N T S N N N TS O T T O Y Y Y T |
A —— " b e ———— e e S|

This will cause the compiler to allocate a 202 word buffer area for an Input File called 'MAINFL
held on Deck Address 2. As described, this File cannot be used to achieve simultaneous Read/ Write.

48 , 3175(2.65)

TAS MANUAL CHAPTER 5

Independent Writing (Qutput File) 5.1.2

This format is used when the user does not wish the control program to time-share the physical
writing of the File described with any physical tape reading.

Des Input or File Block Deck Position of
1243 9 Outpur [I5 Name 21 27 Length (33 Address |39 Keyword

06(F1LE SUTPUTname LENGTH nnn|PECK xIKEY nan
1 Lldl I B B B R | o N AT S| IO O B O S O | e g

AM_,——-%._JL__/\——‘M__——‘_,,______/%

Allocated Buffer Area

Highest Key

TAS Key 2 Words
Write-out Key
- R
_____ E____.
& Defined
@]
R n nn Words

——f--1 "}

E. of B. Marker 1 Word

w

Example:
Des Input or File Block Deck Pasition of
12)3 9 Outpur {5 Name |21 27 Length (33 Address [39 Keyword

06|FI1LE SUTPUTIUPDATEHELENGTH 176|pECK 1|KEY 10
e T T YW SO SSOY OO O N (I N O 0 (SO N P O 3 T O 0 O O A O 9 AT

Y S N S E—

This will cause the compiler to allocate an I.A.S. buffer area of 179 words for an output File
called 'UPDATE' on Deck Address 1.

The word holding the highest key will be made equal to the 10th word of each Record as it is
stored in the buffer areca. As described, this File cannot be used to achieve simultaneous Read/ Write.

3175(2.65) - 49

TAS MANUAL CHAPTER 5§

Simultaneous Read/Write 5.1.3

An Input and an Output File can be made to achieve simultaneous Read/Write by the use of 'SIM".
TAS allows the user to choose between two alternatives offering different degrees of simultaneous
Read/Write, basing his decision on the amount of ILA,S. available. The two Files on which
simultaneity is desired must be described on consecutive cards, the input File first.

Any one input File may be described as 'SIM' with only one output File, and vice versa. The
same File may not be described in more than one 'SIM' pair.

Simultaneous Read/Write (Single Output Area) 5.1.4
Des Input or File Block Deck Position of i Associated Single or
12[3 9 Output |15 Name |21 b7 Length [33 Aadress [39 Keyword (45 °'™ Is1 File 57 Double 62
06/F1LE INPUT |name AILENGTH nnn|DECK x SIM name H
e f B o i onilee o Joeofd e i e B P Qe o o Bl oo B o G o bl B B g e Pt ol BB e & IR T A e
06|F | LE U TP UT|name BLENGTH nnon|fP ECK x|KEY nnSIM name ASINGLE
VI D T T N S O T N T T T N T O T S U N T v N N N A A s |
l— ————,— o T T e
Allocated Buffer Areas
Input Area (nnn + 2) Qutput Area (nnn + 3)
Highest Key
1 Word TAS Key TAS Key 2 Words
Highest Key Write-out Key
R R
E E
Defined C G Defined
0 0
n nn Words R R n nn Words
D D
3 S
1 Word E. of B. Marker E. of B. Marker 1 Word
Example:
Des Input or File Block Deck Position of ’ Associated Single or
123 9 OQutput [15 Name |21 h7 Length 33 Address [39 Keyword [45 ™ |51 File 57 Double 62
0 6|/F1LE INPUT |[MOVEIN|ILENGTH 200|DECK 3 SI M MeVEST
s KOS O O O [O 0 Y 0| [(SOOGS0 (O OO R (0 (O Y (00) [[Ry [TSP S [05 PO PN Y] OV om o E] (Y e (] I - (st FRRSS J) 5 [AA0) OO RN 0 C
06|F I LE SUTPUTIMOEVESTILENGTH 100lpeck 4KEY O05[STM MEeV EIN|SING LE
I A Y YT Y Y N N Y TS N T T S N T Yy N N S T T T O v |
e B

This will cause the compiler to allocate 202 words of buffer storage for the input File called
'MOVEIN' on Deck Address 3, and a single buffer area of 103 words for the output File called
"MOVEQOT' on Deck Address 4. The 'highest key' word in the output buffer area will be made equal
to the 5th word of each record as it is stored in the buffer.

This method of describing Files will achieve simultaneous Read/Write only if the control finds
the input buffer area empty at the time when it is necessary to clear the output buffer. Hence,'to
achieve full simultaneity, the output buffer should be one record ahead of the input buffer.

50 3175(2.65)

TAS MANUAL CHAPTER 5

Simultaneous Read/Write (Double Output Area) 5.1.5
Des Input or File Block Deck Position of _ Associated Single or
123 9 OQutput 5 Name 21 27 Length |33 Address [39 Keyword |45 Sim. 151 File 57 Double 6
06(FI1LE INPUT name A|ILENGTH nnn|DECK x SIM n ame B ;
I SR RN GO0 U JHOY | S TNY N N [Y SO N N S PO OO A WO O) O (N Y 0 N N O T O SO N, GO O N ST N O N N S SO N OO O S NN A Vo S e |
D6|F I LE O U TPUTn ame BJLENGTH nnniD ECK xKEY nn|SIM n ame AD@-UBL}1
S OO 90 O O O O T B 0 O OO0 O P O O I O O O 8 O L O WA O O O O I8 O O O O O
 — — L e e L ————
Allocated Buffer Areas
Input (nnn + 2) Qutput-1st Area (nnn + 3) Qutput-2nd Area (nnn - 1)
Highest Key
1 Word TAS Key TAS Key 2 Words
Highest Key Write-out Key
R R R
E E E
Defined C C Defined o
o O (0]
n nn Words R R n nn Words R
D D D
S S 5
1 Word E. of B. Marker E. of B. Marker 1 Word
Example:
Des Input or File Block Deck Position of . Associated Single or {
1243) 9 Output [I5 Name 21 27 Length 33 Aadress [39 Keyword |45 3l 151 File 57 Double 62
06FILE |INPUT [UPDATE[LENGTH 100/peEcK 5 SIM ME&V EST
2] O O O O O O L O OO O O e O O IO 38 0 O O P 0 OO O O, s O, 0 8 030 O 0 DY 15y 0 P (PR A OO O 0
06/F 1 LE S UTPUTIMSVESTIL ENGTH 200DECK 6|/KEY O00SIM UPDATE|D€UB LE
N S T N S N N N T T O O N T T T T N N I S T T N T N T N O
L__,_--..__/———/" |~]]~ —] |]

This will cause the compiler to allocate 102 words of buffer storage for the input File called
'UPDATE' onDeck Address 5, and fwo buffer areas, totalling 402 words, for the output File called
'"MOVEQT' on Deck Address 6.

Notice that not only are the 3 extra words not allocated to the second area, but neither is the
'highest key' word. Notice also that, since we have described the key word (KEY.nn) as zero, the
'highest key' word in the output buffer area will be zeroized before writing to tape.

This is the description method to use for the best tape handling speeds. Output Records are
stacked in the first buffer area until it is full, when they are stacked in the second. When the input
buffer area is empty and the first output one is full, simultaneous Read/Write takes place. The
records in the second output buffer area are then moved into the first, and processing continues.

Only when both output buffers fill before the input buffer empties will writing take place without reading.

3175(2.65) J © 51

TAS MANUAL CHAPTER §

File Buffer Areas: Storage Allocation 5.1.6

File "buffers' will be allocated I.A.S, storage in the same order as the File descriptions, starting
immediately after the standard control program storage. As there is no environment division in
TAS 2, no checks can be made to ensure that the requested storage fits into the available LA.S.

52 3175(2.65)

TAS MANUAL CHAPTER &

TAPE RECORD FORMATS 5.2

Tape Records are described on Format sheets, the general principle of description being the same
as that for other Input or Output formats. In the TYPE column is written '"RECz..", where 'z’ is the
code letter (in the range A to Z) of the format. In this way may be described up to 26 different Record
formats. No distinction of any kind is made between input and output Records, and no connection
exists between particular Records and Files. Any one Record may be read from or written to any, or
all, Files. Conversely, any number of different Records may be read from, or written to, any one

File.

Starting on the same line in the "KEY' column is written the description key of the first Field of
the Record, and again on the same line, the name chosen for that field. This name may not be that
of a Table or Working Store and may not be Itemized. Subsequent keys and names are written on
subsequent consecutive lines. The Record must be described completely, starting at the first word
and specifying the Fields in order.

At object program time (on request) the control program will merely present to the user, or stack
away as appropriate, the next Record of a File to, or from, the Record area named. No rearrange-
ment or reorganization of the actual words or digits of the data will take place, and, for this reason,
the KEY contains only one piece of information. In positions 5 and 6 is written the number of data
words occupied by the Field, the first four positions being left blank. Any one Field may be up to
99 words long.

From this it will be clear that automatic packing and unpacking of data does not take place, all
Fields being presumed to be one or more complete words in length.

As with other formats,'RECz.." must be repeated at the head of each card needed to describe the
Record, and each Record format must commence a new card.

There are three methods of describing records, and these are shown in 5.2.1, 5.2.2 and 5.2.3.

3175(2.65) 53

TAS MANUAL CHAPTER 5

A Record having its own Record Area 5.2.1
DES TYPE KEY FIELD NAME | CARD No.
1 23 8 COLS 9-74
0y FIREGA o | 5y /| LlPLANT,
1| \/| JSTERE,
o], \/| Il PF‘%IR \T !‘\! I‘e'
Ll \/| 2|DES CR,
L 1/| e Q[TIYJ - [A
0,7|RECA, | Lo ‘/| LR RT \CEEI
L L/I AT Y, CeD
F—J/\L__M | mngs o v |

This will cause the compiler to allocate 9 words of I.A.S, storage for a Record referenced as
'"RECA’, split up into Fields referenced by the Field names described in the column headed 'FIELD
NAME'., These Fields are used and referred to as normal L A,8, Fields.

54 3175(2.65)

TAS MANUAL CHAPTER 3

A Record re-defining another Record Area 5.2.2

In order to save storage, it is possible to make all, or a number of Records share the same
Record area. In this case, the 'original' Record area must be equal to, or greater than, any other
re-defining it.

DES TYPE KEY FIELD NAME | CARD No.
1 213 8 COLS 69-74

I|PLA NT

07 R\EICTNI/ A L

L SJT.\GB ,‘El,_

L PARTNGS

LU s AGE2

0#|RECN/ A 1lUSAGE 3

/
/
/
/o USAGE]
/
/
/

LIQTY, |
,V“J_—._._—/—-—"*-_‘ L — e]

This description will cause the compiler to recognise the Fields described, but not to allocate
any new storage for them.

In this way is provided an automatic 'Rename’ facility for complete or part Records, with the
additional benefit that the original name or names are not lost; both old and new names may be
referenced throughout the program.

Note: Although it is possible to "WRITE' any Record to a File, it is not possible-to 'READ' a
Re-defining Record. The procedure must always be to read the original Record, and then refer to
the Fields in the re-defining one.

3175(2.65) 55

TAS MANUAL : CHAPTER 5

A Record ‘Sharing’ a File Buffer Area 5.2.3

It is also possible to make a Record 'share' the buffer area of the input File from which it is
read, This File may not be 'SIM'. This is done by writing in position 6 of the TYPE column the
Deck Address of the relevant File.

DES TYPE KEY FIELD NAME | CARD No.
1 213 8 COLS 69-74

—

0,#|R,ECZ /3 P LANT,

—

ST, O RE

it

P‘A‘RIT‘N‘G

[

DESCR,

i

Q\TlYI\\|r1|\

0,HRECZ 3] | |

—

PR ICF

ol] N N~

QTY,CGeD
%MAM

—

This description will cause the compiler to recognise the Fields described and listed, but not
to allocate any new storage for them. The Record area for 'RECZ' will be in the buffer allocated to
the File on Deck Address 3, starting at the first word of the first Record in that File buffer.

Only one Record may share any one File area. Other Records can be made to use this area
only by using the re-defining facility: e.g. to cause '"RECY" also to use the File area allocated to
Deck Address 3, the user must specify 'RECY/Z'. 'RECY/3’ would not be allowed.

No Record may share the File area of a 'SIM' File.

General Considerations 5.2.4

From the Record descriptions in the last three examples, it will be seen that the designatory
letter deseribing a field as Denary, Sterling etc. is not present as with other Input/Output formats.
This letter is not necessary here, since any Field mentioned that is associated with other input/output
devices will be fully described (and appropriate distribution keys generated) in those formats.

Notice that, as with any other alphabetic constant, alphabetic information from tape which is to
be output to either the printer or the punch must be in the form 6Z, 6N.

The control program does not 'distribute' a tape Record as it does, for example, a punched card.
It presents it, into the Record area, as a block of words in I,A.S. For this reason Fields in different
Records may not be given identical names, except in the case of Re-defining Records with the Fields
concerned occurring in the same position in both Records.

Apart from this, the Fields may be freely referenced in other input/output formats, and through-
out the procedure, as normal.

The user must ensure that the first word of any Record contains the 'number-of-words' parameter
(see Appendix M),

56 3175(2.65)

TAS MANUAL CHAPTER 5

TAPE VERBS ' 5.3

As has been stated, the user does not have to concern himself with the problems of physical
handling of tape blocks; he merely regards his Files as strings of Records, and the '/READ' and
'"WRITE' verbs perform, as far as he is concerned, logical presentations and storings. This still
applies to multi-reel files, as 'end of reel' conditions are dealt with by TAS, and do not therefore
require user intervention.

End of File, on the other hand, does. Because any macro which may cause a physical read of
tape may result in this condition occurring, the user must specify with any such macro an "END
condition label': 'AT,END,L..nnn'. This is the label to which control will be transferred should
the condition arise. It must be in the same block as the macro referring to it. When the program
reaches label nnn, the Deck Address of the File closed will be in digit 12 of PRES.

'READ RECord' and 'READ IN' are not the only macros which must have this. Any WRITE
verb referring to a File 'SIM' with another may find the input buffer area empty and so perform a
physical read of tape. Thus the end label of aninput file may be reached on a WRITE macro, and
for this reason any WRITE of a 'SIM' file must cater for the condition.

Modifications

No name in a tape handling macro may be modified.

3175(2.65) 57

TAS MANUAL

READ RECord

CHAPTER §

5.3.1

This macro has the effect of presenting the next Record of the File named in field B to the
Record area referenced.

The format is

The File must be an input File.

Des| Label Field 'A Field 'B' Field 'C'

12 9 15 21 27 33 39

Oi5] N I A0 B | RE]%‘ATDI ! I{\EI:C\Z\ | E\JRI.Q\I\I\I 1 n\alnil eI 1 I’\!T[IEINJBLJI L Ininp

——] — |l
Example:

Des| Label Field 'A' Field 'B' Field 'C’

12 15 21 27 33 39

015 } POt O ik I P\IE"WI)&II-)I | R\EICI’A‘I] F\RiQIM L M'AII\NF !Ll AT\ IEN\DLi 1 !J'[O I9

o e e | e e e | N e

This will present the next Record from the File named '"MAINFL' to the Record area 'RECA".
Should the 'end' condition occur, control will be transferred to label 109,

Note that, even if the different Records on a File do not all re-detine the same Record area, it
is often not possible to know in advance which particular Record is next in sequence. In this case,
the procedure must always be to 'READ' the longest, and then discover by program which has been
presented. There is no facility akin to the "DES' test in card reading, for discovering which Record
is in hand and distributing and transferring control accordingly.

If a Record has been defined as sharing an input File buffer, then that Record may be read from
that File only, and from no other.

58 3175(2.65)

TAS MANUAL

READ IN

This macro is used mainly, but not exclusively, for searching a reference File.

CHAPTER 5

5.3.2

It physically

reads from tape to the File buffer area the next group of Records on the File, no matter whether the

buffer area is empty or not.
rather than clear it from the buffer Record by Record.

5.4.2 below.

The format is
Des| Label Field 'A’ Field 'B' Field 'C'
1203 15 21 27 33 39
0\5 | I N N I | RIEIA1DI 1 I\]NVI | I | FTRGM 1 nlame\ i3 AT’I'P \EINLDL\ 1 Wnlntn
NM—MAA—M I
The File must be an Input File.
Example:
Des| Label Field 'A’ Tield 'B' Field 'C'
1 243 9 15 21 27 33 39
Ol5 A OO W RIEI‘A‘]DI 1 I NI I 11 F}R"G‘M LII fSlTl ! AITL LEINDLI 1 [?‘izlo
] _— e —] |]

This will present the next group of Records from the Input File 'LIST'.

condition occur, control will be transferred to label 720.

3175(2.65)

Should the

Thus, it enables the user to ignore the unwanted remainder of a group
A fuller explanation of its use is given in

'end'

59

TAS MANUAL CHAPTER §

WRITE RECord 5.3.3

This macro has the effect of writing the Record area referenced to the File named in field B.
This File must be an output File. The format is:

Des| Label Field 'A’ Field 'B’

1 243 9 15 21 27

0\5 | O .I | vV’LIKII!TI:E:I RIJEIC\ZI L TIQ | nlafnlei_l__
L ~] |

If the File is 'SIM' the format must be extended to cater for the END condition in the associated
input File:

Des| Label Field 'A’ Field 'B' Field 'C’

1 293 9 15 21 27 33 39

050, o WRITE REG2 |19, , Inamsg , AT ENDIL | pp
L i —1 — l —— -~]l

Example:
Des| Label Field 'A’ Field 'B'
1 2§43 9 15 21 27
015 I T S | VVlRlI ITIEI RIEICIAI L 'I‘\e‘i Lk MAII }\r IFFL
MMMMM;—M

This will write 'RECA' to the File named 'MAINFL' which is #of 'SIM' with an input File.

Des| Label Field 'A' Field 'B' Field 'C'
1 2§43 9 15 21 27 33 39
05, ,,, WRITE RECA |T€ , IMALNFIAT ENDL 406
—— e T e — e
This will have the same effect as the previous example with regard to 'RECA'. However,

'MAINFL' is in this case 'SIM' with an input File, and therefore the extension to the format is
necessary. Should an 'end' condition occur on the input File, control will be transferred to label 406.

60 3175(2.65)

TAS MANUAL

WRITE AWAY

This macro is used to clear an output File buffer area, in order to keep different sections of a

File separate on a tape, or to complete a File before writing an 'end' label to it.

CHAPTER 5

5.3.4

It physically writes to tape all those Records remaining in the buffer area of the File named in
field B. The File must be an output File.

Des! Label Field 'A' Field 'B'
1 243 9 15 21 27
O? I T Y\Rll ITlEi A‘V\{A‘Y’ 1 TJQE L1 n!a m e! 1

L
L—_ T~

If the file is 'SIM' with an input file, the format must be extended to:

Des Label Field 'A' Field 'B’ Field 'C’

1 293 9 15 21 27 33 39

05 WRI TE [AWAY TG mame AT ENDL nnn

] | TP (i e (U | S i il R 0 o R | T O T O [0 | R o W R i T |

-——'W—*———-/“;——‘___——-—WMW
Examples:

Des| Label Field "A’ Field 'B'

7 243 9 15 21 27

05) , , , IWRITE AWAY, | |TS , , MEVEST

S e — e ———

This will write to tape all those records in the buffer area of the File 'MOVEOT'.

'MOVEQOT' is now 'SIM' with an input File.

transferred to label 127.

3175(2.65)

Des| Label Field 'A' Field 'B’ Field 'C'

1 243 S 15 21 27 33 39

05 WRITE |AWAY Te MeVEeT|AT ENDL 12 7
| I A RS | { S I | e S O i (] I O P A A N 1 S S N B

e~ —

The macro will have the same effect as the above
with regard to 'MOVEOT', but should an 'end' condition occur on the input File, control will be

61

TAS MANUAL

WRITE file TO

file

CHAPTER 5

5.3.5

This macro is used mainly, but not exclusively, for scanning a File which is being updated (see

below, 5.4.2).

It has the effect of writing all the Records not yet presented from the buffer of the

input File named in field A to the output File named in field B. When this is completed, the input

File buffer area is refilled,

The format is

Des| Label Field 'A' Field 'B' Field 'C’

1 2§43 9 15 21 2. 33 39

0\5 L1 WRITE name, | IT& , Pame | AT JNDIL, ppn
R e e — e

The File named in field A must be an input File, and that in field B an output File.

The Files must be either independent or 'SIM' with each other .

Neither File can be 'SIM' with

a third.
Example:
Des Label Field 'A’ Field 'B' Field 'C'
1 15 21 27 33 39
0’5 b oads) V\irlj{lI IT-\EI MQFVJE\I [N Tl-el b9 | MQ:\[JEIQET AITI JEINVD L1 E_3 ll6 |3
T T ———_

This will write all the Records not yet presented, from the buffer area of the input File 'MOVEIN!'
to the output File 'MOVEOT', and refill the 'MOVEIN' buffer.

Should an 'end' condition occur on 'MOVEIN', control will be transferred to label 163.

62

3175(2.65)

TAS MANUAL CHAPTER 5

WRITE END 5.3.6

This macro writes an 'end' label to, and closes, the File specified, which rmust be an output
File. The format is

Des| Label Field 'A’ Field 'B’

1 243 9 15 21 27

015 T-do-d- o} -‘AITRI leEI EIND' { I | 'I‘IGJ | N | 5 |Li lrr‘l e| 1
— — —

Example:

Des{ Label Field 'A’ Field 'B'

1 243 3 15 21 27

015 | N W | vvvll{lF IT\EI EII\IW [)I 11 Tlelh R Me\:v'\ElielT
——u-.._,__————lw———-—*-—--_dl—ﬂ-_.__.—""_" S

This will write an 'end' label to and close down the output File 'MOVEOT'.

It should be noted that a "WRITE AWAY' should be given immediately before a "WRITE END’,
in order to clear the buffer area before closing the File.

Once a "WRITE END' order has been given to a File, that File must not be written to again, nor
may it be read again without first being 'renewed'. To do so will be to bring the program to an
inescapable 110920 stop.

3175(2.65) 63

TAS MANUAL CHAPTER 5§

WRITE DUMP 5.3.7

This macro dumps the current state of the computer onto any output File. The amount of drum
to be dumped is at the user's discretion, but must cover the full object program, and any data areas
lying beyond it on the drum. The format is

Field "A’ Field 'B’ Field 'C" Field 'D' Field 'E'
9 15 21 27 33 39 45) 51 57 63
WRITE DUME [T& , | DECK, xPLOCK |, , mop 1AS LA AE DJR1UlNi[i 1 ddde
b : —

where x 1s the Deck Address of the selected File.

nnn is the maximum block gize in words (excluding the end of block marker) during dumping.
This may not exceed 210 words for ;" tape programs, and in any case may not exceed
the data block size of the Tape as defined in the File Description.

iii is the size of the ILA.S. in decades.

dddd is the number of decades of the drum, starting from word 0, to be dumped.

Example:
Field 'A' Field 'B' Field 'C' Field 'D' Field 'E'
9 15 21 27 33 39 45 51 57 63
WR{I lTiE DIU]N;pl 1 Tﬁ‘\ |] [DEICDKI |3 BILIQCIK[| ?IIS [O I]‘L‘LISI 1 111 1 12‘10 DRIUIM L | Y ILOIO 10
o) e —

This will dump onto the File at Deck Address 3 (which is defined as having blocks of 150 Words),
1200 words of I.LA.,S. and the first 10, 000 words of the drum. '

Note: A special drum Table must be defined by the user for use with this macro. (See Appendix Q.)

B4 3175(2.65)

TAS MANUAL CHAPTER 5§

RENEW 5.3.8

This macro enables the user to re-commence the processing of an Input File from the beginning,
at any stage of the program. The format is:

Des| Label Field 'A

1 2§3 9 15

015 L1 IRENEW hame |
e T

The File specified will be rewound, and re-opened as an Input File. (If the reel of the File
attached is found to be other than the first, a stop will occur, and the operator may then re-attach
the first reel.)

On exit, the Beginning of File Label will be left in L A.S. 390 to 395.

‘Renew’ing an Output File

The problem is that it is not possible in a TAS program to 'Read’ from a File described as
'OQutput’'. Therefore, in order to Read a File after having Written it, the following procedure must
be followed:

(a) Two Files of different names, one Input, one Output, mustbe defined on the same deck. This
is the only time two Files can be defined on the same deck, and the Input File must be the
first to be presented to the compiler. Job Set-up is not performed on the fnput File, which
is not originally present.

(b) After '"Writing End' to the Output File, the order 'Renew’ is given to the Input File and the
program may then proceed to 'Read' from this File.

End must be written to an Output File before it is Renewed in this way. To fail to do so will

be to cause the object program to break down. A multi-reel output File may be Renewed only on
a deck on which was originally held an input File of identical Beginning of File Label. Job Set-up
must have been performed on this File,

Note: Once a File has been 'end'ad, either by Reading or by Writing End, it is locked out, and

may not be addressed again without first being Renewed. To attempt to do so will be to bring the
program to an inescapable error stop.

3175(2.65) 65

TAS MANUAL

PROGRAMMING CONSIDERATIONS

Highest Key Word

No word in a File buffer area as such may be addressed directly.

be 'Read’ into a Record area, and addressed from there.

The only exception to this rule is the 'Highest Key' of a Record Group (Tape Block)..
be referenced in TAS instructions by the name of the File itself, provided that it is not altered or

updated in any way.

Example:

Modification

The name of a Highest Key may not be modified under any circumstances.

66

Information off Files must

Des|

Field 'A' Field 'B' Field
1 2 15 21 27 33

0‘5 M‘GI‘VF lI N 1 'etlci | 11 | T B

05 MeV EIN|WI TH (X etc
1 Y O e R 0 T | SN 0 O O | { IR 0 L e |

e oae el

CHAPTER 5

TAS MANUAL

CHAPTER 5

Searching a file 5.4.2
Inspecting the 'Highest Key' and using the "READ IN' macro makes searching a File for a
specific Record a very simple matter in TAS 2.
Example:
Des| Label Field 'A’ Field 'B’ Field 'C' Field ‘D' Field 'E'
12 15 21 27 33 39 45 51 57 63
OI5]‘1 1 13\6 l5 C\GPAIPI 1 L |N|P!U1Tl .“VE IITIH\ 1 SIEWAIRIC:IH N{‘etR\Er 1 L\ 1 19|1 18 EIQ\IJ\ AiLv LL 1 1911 IS L?E\SWSL 1 L] 1 |8|2 L-?
0|5 I“i] lsizl;lRlElAlq 1 IINI Ll FrngiNiw 1 I!NJPIUITi AI'IJ‘ \ElenLL 1 llllll { I W S 5 T EESSY 8 (T | { O O T I 1 |
015 lJIIlGI-eI.lTJelI"\II316l5AJI\I) P T L) Y Ry i B B (S, (0] 988 { N S 0 G N N T B N | F I B I
T e - i ——————— L ———

If the File is being updated, the '"WRITE file TO file' macro may be used in exactly the same

fashion.
Example:
Des| Label Field 'A’ Field 'B' Field 'C' Field 'D’ Field 'E'
12 15 2 27 33 39 45 51 57 63
0501, | 456[WRIT E MEVEI N|T&, MOV EST|AT ENIL 123
Y S ik Ll | 1 § ey ' 1l | L 7 1 | B R M | L | 11 T IR Yokl 1 1 11 | B L1 1.1 L 1L 11 | T
D |5 y D o S 0 Cle‘lMpl 1 MielleII lI\I vVI II':[‘ll_g] StEljx RICIH NI[Q.R'lE\ L lJ| 1 l415 |1 :EZI qu\ Allj LI 1 1415 l2 ‘L‘Eﬁ 5 1 1 LI 1 I‘ilﬁl6
05|L 2READ |[RECA [FROM [MOVEIN|AT ENIL 123
1 Lk Eetek) U o ook I i S e T L1 1 11 L Ll Ll | -] L1 L Ll 1 1 1 00 e L | | N T D | y A S W o | DU (gt I G |
87

3175(2.65)

TAS MANUAL CHAPTER 5

Job Set-up . 5.4.3

TAS expects to find all tapes correctly loaded and positioned ready for use. For this reason, the
Job Set-up program (C/09/00 for 1" and 3" systems, D/09/00 for i systems) must always be obeyed
immediately before any TAS program involving magnetic tape.

A1l facilities available through Job Set-up, e.g. Program on Tape, may be used with a TAS 2-
compiled program.

On the Job Set-up parameter cards RRN 80 must be set to drum decade 200. RRN 86 must be

set to drum decade 272 for the 3" and 1" Tape Control, or to drum decade 244 for the 3" system.
Restarts 5.4.4

All Restarts from specific dumps must be carried out by the Restart routine (C/05/01) as for
any other program. The necessary relativiser settings are:-

Drum word

I.A.S. word I inch and # inch # inch systems
systems
RRN 75 0 3000 3000
RRN 76 0 2210 2710
RRN 77 390 2200 2700
RRN 80 600 - 2000
RRN 86 - - 2440

Note that the sprag engaged on the printer will have altered, and that therefore the 'sprag
engaged number' in the program will have to be reset. This number is held in L.A.8. location 334.

The Dump Subroutine on the drum will not have been mutilated.

Repositioning 5.4.5
If repositioning (i.e. it is necessary to change tape decks in the middle of a.program run) is re-

quired in the event of a tape failure, then there must be a special table defined for use by the compiler.
Details of this table are given in Appendix Q.

68 3175(2.65)

