1301 Programmers Manual
Section = Part Four

Original PDF by Roger Holmes
Jan 2009

Sub Sections and HTML version
by Rod Brown

Supplied by ict1301.co.uk
from the pages of the

ICT 1301
Resurrection Project

=1

programmers reference manual

W

.||I"'““'l[}||=]pII RIES

Part 4

PROGRAMMING
TECHNIQUES

3165(2.64)

Contents

41 FLOWCHARTING v ver aes
4.1.1 Recommended Procedures

4,1.2 Recommended Symbols ...
4,2 WRITING THE PROGRAM civ ver wer one

4.3 MODIFICATION ... wii ver eer ver evn e onn
4.3.1 Useful Instructions for Modification
Functions 66 and 67
Function 41
4,3.2 Demodification ...

4.3.3 Modification and Relative Addresses

4.4, SUBROUTINES
44,1 Using the Relative Addressing System ...
4.4.2 Inclusion in the Main Program Block
4.4.3 Use of Indicators
4.4.4 Use of Several Entry Points R pEh, o
4,45 Standard Procedure

45 STORAGE ALLOCATION

Part 4

......

12
12
13
15
18

18
22
22
23
23
23

24

Contents continued Page

4.6 INITIAL ORDERSi. tve cer vee ove see eee see wew 2D
4.6.1 Control Designation 'R'" oo oo 2B
4.6.2 Control Designation 'B'o ..o 27
4.6.3 Control Designation 'E'" ws 29
4.6.4 Control Designation 'C'o oo ... 30
4.6.5 Control Designation 'F'o 31
4,6.6 Control Designations 'P' and 'M' 32
4.6.,7 Initial Orders Sequence Check 34

4.7 RELATIVIZERS iis sz woe wws wes swe ome ows wwn www e 00D
47.1 Relative Addressing and Use of General

Purpose Subroutines 35

4.8 RESTART PROCEDURES cev wer eee eew o 3T

4.8.1 Restarts following I.A.S. and Drum

Parity Error Stops vis nww sey OB

4.9 PROGRAM TESTINGo cor ver ven ver ane e 80

4.10 TIMING A PROGRAM cor ver e een as cow wens A0

4.11 DOCUMENTATION ... v vvr aen sen vee aes wen wee aee 42

4.12 AN EXAMPLE OF A CODED PROGRAM. 43

4.72.1 Tntroduction s s ass 56 san o G0 e s avwe 43
2.2 FACLOTE wis svs wven v waw wes wan saw e swws awe B0
4.12.3 ResultS ... e viv ver cir eee sen een s vee we. 44

4324 'CaleulationSis ws s sev wev swe st e e wee 44
4.12.5 P.A.Y.E, Calculation v eev en ... dd
4.12.6 Timingo. vev ver eee sie wee wen wee aee wen 4B

IHlustrations
Figure 44 Systems Flowchart Symbols 2

Figure 45 TFlowchart of P.AY .E. Program 47
Figure 46 Main Program... G e Sm e wEE 50
Eioure 47 Constantsi . s owe sme se’ wow sows ons ssss eee mme 09
Figure 48 Temporary Storage v ver ees wis ey wew DD
Figure 49 Input Information v oo o ... 56

Figure 50 Result of Calculations oo oo ool Ll 57

Part 4 3165(2.64)

Part 4

Programming
Techniques

FLOWCHARTING 4.1

Programming consists of writing a series of instructiens, each of which contributes minutely
to the overall process, and it is essential that the programmer should have a clear representation
of the logical processes involved in a job before commencing to write coded instructions. For this
reason, the logic is expressed in diagrammatical form, in such a way that the ilow of the logic can

be easily followed. Such diagrams are called {lowcharts.

1.C.T has adopted certain conventions for drawing flowcharts and it is recommended that these

should be followed.

When commencing a large job, particularly a commercial application, it is probable that the
first flowchart will be a Systems Flowchart. This chart illustrates in broad outline the data to
be supplied to the computer, the calculationsto be performed and the form of the results, indicating
which peripheral units are to be used. The systems flowchart is usually drawn up from a written
specification of the job, the diagrammatic representation enabling any basic logical errors to be
detected at an early stage. The systems flowchart should be expressed sothat it can be readily under-
stood both by programmers and by those who know the system under considerationbut do not necess-
arily understand programming. The systems flowchart is very often the initial document received

by the programmer and should give him all the information he requires to prepare the program.

Before coding is commenced, a programmers' flowchart should be prepared, either from the
systems flowchart or from a written specification of the routine. This flowchart should cover in
detail all calculations, input/output techniques and error procedures. Indraw ingupthe programmers’
flowchart, the program instructions available should constantly be borne in mind. The flowchart
should be sufficiently detailed for the programmer to convert if directly into coded instructions.
When the chart has been drawn, it should be carefully checked and tested for logical errors by
mentally following the flow for sample data. Careful checking at this stage can save much wasted
programming and machine time. As far as possible, programmers' flowcharts should be written

in terms readily understood by other programmers not directly concerned with that particular job.

3165(2.64) Part 4 1

COMPUTER EQUIPMENT

Description 1.C.T. Symbol Description I.C.T. Symbol
Source Core Store
Document

Punched Card

Paper Tape

Typewriter
Input

Computer

Magnetic Drum

Part 4

Magnetic
Tape

General
Operational
Symbol

Printed
OQutput

Typewriter
Qutput

Figure 44: SYSTEMS FLOWCHART SYMBOLS

~~X]
N

Work Tape

Typewriter

L

3165(2.64)

NON-COMPUTER EQUIPMENT

Description 1.C.T.Symbol Description I.C.T. Symbol
Punch and
Verify Sort
Tabulator
File of
Punched
Cards
Calculator
Interpret,
Match, Collate, Manual
Interpolate ;
Operations
or
Reproduce
Figure 44 continued
Recommended Procedures 4.1.1

Flowcharts should be drawn on small sheets of paper, being split into convenient sections to
make this possible. Programmers' flowcharts should normally be drawn on foolscap sheets and
systems flowcharts should not exceed double foolscap size. The use of small sheets makes paper
-handling easier, makes chartsless confusing tofollow, and enables them to be more easily reproduced
either by typing or by photo-copying. If black ink on tracing paper is used then dyeline copies are

possible, which is more economical than photo-copying.

The flow of charting should be vertical, running from top to bottom of the sheet, the direction
of flow being indicated by arrows, particularly when branches occur for alternative conditions.
Recommended symbols should be used wherever possible. Templatesare available which contain the
standard symbols, andbacking charts (Form No. 3203(3.60)) which have vertical andhorizontal guiding
lines heavily imprinted onthem, so that they show through the flowchart paper, may also be obtained

from I.C.T.

Recommended Symbols 4.1.2
The I.C.T.recommended symbols for systems flowcharts are shown in Figure 44. The following

symbols are recommended for programmers' flowcharts:

3165(2.64) Part 4 3

Boxes Statements of procedure should be enclosed in boxes. Where consecutive statements are
uninterrupted by entries from other parts of the chart, several statements should be enclosed in

one box. The statements should be clear and expressed as short sentences.

| l

Add quantity A to Start output on
quantity B. Store deck address 3. Start
result as current total reading from deck
sales. Add result to address 1, Set count
cumulative sales for to zero. Unset over-
year. flow indicator.

l l

Branches Where different procedures are followed corresponding to different conditions holding,
the necessarytest todistinguishthe various conditions is enclosed by an oval symbol. The branches

stemming from the oval should each be marked to indicate which condition they denote.

1

Test
Gampute 6 Columns
C=AxB Read

Store 6
Test Result .
characters Reject
in I,A.S. Card

R A

Connectors A connector symbol is provided so thatthe flow can proceed from one sheet to another.
Connector symbols may also be usedto proceed from one pointto another on one sheet, particularly

when a line joining the points would confuse rather than clarify the chart.

The connector symbol consists of a small circle enclosing an identifying number.

indicates that the procedure continues at connector 16 with an arrow leading from it, i.e.

Thus,

4 Part 4 3165(2.64)

When subsequently converting a flowchartto programinstructions, the presence of a connector
with an arrow leading from it indicates a junction of several pieces of program. This means that
a programmed jump is going to occur to the next instruction and it should therefore be in the

first half of a word.

No,

earlier

Go to error

Is this for \

a later rep?

Transfer next
block of sales
data to I.A.S.

routine.

Store lst reps data.
Modify for next rep.
Set counter to zero.

|

Neither C :

Go to error
routine.

Is this for
the same rep?

Overseas

Test Class
of Sale

Add quantity
into home
sales total,

l

Starts, Stops and Subroutines
Start in a circle rather larger than the connector symbol.

It is usual to indicate the start of a routine by enclosing the word

Set counts A,B and C
to zero., Unset
indicators 10 and 11.

3165(2.64) Part 4

When flowcharting a subroutine the word Entry is used instéad of Start.

Store Link, Temp.
Store contents of
Register B.

When the procedure involves stopping the computer, this is indicated by the word Stop enclosed

in a circle. A number may also be included to identify the stop.

!

Calculate gross
wage = rate X
hours worked.

Test if this
lies in
permitted range.

Yes

When a subroutine is used as part of the procedure, the subroutine logic is not flowchartedas
part of the main routine. The entry to and exit from the subroutine are indicated on the main
flowchart by lines leading to and from a circle. The circle contains either the name of the sub-
routine or an identifying number. In the latter case the name of the subroutine should also be
written beside the circle. If the subroutine has been specially written for the job concerned, then

it is flowcharted separately. If the subroutineis a library routine, its flowchart neednot be included.

!

Transfer zones and
numerics for headings
Print into print area.
Subroutine

45

6 Part 4 3165(2.64)

Switches Where different cases share a common piece of procedure, this may be conveniently
represented on a flowchart using switches or variable connectors. The variable connector differs
from the fixed connector in that it contains a letter instead of a number. The letter in the variable

connector is set to different values, the value indicating at which connector the procedure is to continue,

Bring Rep Data Bring Branch
from Drum Data from Drum
Set E = Exit to 11 Set E = Exit to 27

Calculate ratio between sales this
month and the same month last year.
Store for printing. Add Sales this
month to Sales so far this year.
Store for printing. Calculate ratio
between cumulative sales this year
and cumulative sales last year.
Store for printing.

Print
Subroutine

Compare results
with Branch
Target Figures

3165(2.64) Part 4

Summary of programmers’ flowcharting symbols

|

Statements of
Procedure

Testing of Conditions

Fixed Connector

©

Variable Connector or Switch

Exit to and return

Stop (or Start) Point 8 e ———

WRITING THE PROGRAM 4.2
When the flowcharts have been drawn and checked, the actual programming can begin. If the

program is large, it should be divided into sections and written in blocks. Each block should be
given a relativizer reference number (R.R.N.) which should alsobe used as the block number. It is
recommended that blocks of program shouldnot exceed about 50 words as this makes alteration and
rewriting easier if they should become necessary during testing. Relativizer reference numbers
should also be allocated to data blocks and relative addressing should be used throughout. Where
there are severalblocks inaprogram, constants should be heldunder aseparate R.R. N., so that their
addresses remain unchanged if the other blocks are rewritten. An area of temporary storage is
normally requiredfor counts and intermediate results. This too shouldbe givenits ownR.R.N. There

are recommended uses for certain relativizer numbers, which are described later.

8 Part 4 3165(2.64)

Throughout program writing, certain information shouldbe recorded as running documentation,
even though this may later have to be altered. Any program indicators having common significance
to several blocks should be allocated initially. Indicators should normally be used starting at 10
and working upwards, to avoid possible clashes with those used by library routines which start at
19 and work downwards. Card and sheet layouts should be recorded on the charts available for
this purpose. Any stops incorporated into the program should be given an identifying number, and
a note should be kept of the stops used together with their significance. It should be remembered
that in order to produce the identifying number in control register 3 when the computer stops, it
must be written in the address part of the stop instruction with one subtracted from it. Possible
stop numbers lie in the range 1 to 4,000, Numbers 1 to 2,000 are reserved as standard stops for
use in general purpose routines and numbers in the range 2,001 to 4,000 should therefore be used
by the programmer. Any allocations of I.A.S. and drum space should be recorded as they are
allocated, andupdated when necessary. An up-to-date record of any allocations which have already

been made assists greatly in the final storage allocations.

The program is written on program sheets and should be accompanied by narrative. The narrative
should not necessarily cite exactly what each instruction does, but should give a clear overall
picture of what the program is accomplishing. The narrative column should be filled in as the
program is written, as this helps when checking the program and prevents the tedious job of working
through sheets of program filling in the narrative. Ttishelpfulifthere is a systemof cross-referencing
between the program sheets and the flowcharts. The block numbers should be written on the flow-
chart by the appropriate sections. As an added help, a number, which is also written at the
appropriate place on the program sheet, can be given to each step on the flowchart. Any such
numbers on the program sheet should be written where they cannot be confused with information
which is to be punched in the program cards. Any information under the columns 'D', 'F’, 'A’, 'R’
which is not to be punched should be enclosedin brackets. It is also helpful if a note is made on the
program sheet alongside any words which are referred to by instructions in other blocks. This
ensures that if the block has to be altered and its addresses changéd, the necessary alterations are

made to the instructions referring to them.

MODIFICATION 4.3

The address part of an arithmetic instruction may be that of any word in 1,A.S. and may there-
fore refer to either dataor program. For purposes of calculation, the addresses would, of course,
refer to data numbers. Arithmetic operations on program words can, however, be used to good
effect. The alteration of instructions by arithmetic processes is called modification, and is a very

useful technique for reducing the number of words in a program.

Suppose that a particular calculation involves operations on five data numbers in ILA.S., and
that the calculation has to be repeated for ten such sets of numbers. The 50 numbers are held

consecutively in 50 words of 1.A.S.

3165(2.64) Part 4 9

There are three possible alternatives:

(a)

(b)

(c)

The sequence of instructions may be writtenout for each of the ten sets in turn, and obeyed

in this sequence.

The sequence of instructions may be written out for the first set. Instructions may then
be included to modify the address parts of the instructions so that they refer to the second
set. The calculation and modification instructions are repeated until the tenth set of data

has been used.

Instructions may be written to transfer the first set of numbers to a working area. The
instructions to perform the calculation refer to the numbers in this working area. After
the calculation, instructions are written to modify the transfer instructions so that it

transfers the second set of numbers to the working area.

The transfer, calculation and modification instructions are repeated until the calculation

has been performed on all ten sets of data.

Methods (b) and (c) show two methods using modification, andit is evident that the written program

using either of these methods is considerably shorter than that using method (a). The relative

merits of methods (b) and (c) depend on the particular calculation involved. If the calculation is

small and there are few instructions to be modified, then method (b) would be used. If, however,

the calculation is extensive, the program is shorter and fewer mistakes are made if method (c) is

used. To economize on storage space in method (c) it may be possible to use the space occupied by

the first set of data as the working area, obeying the calculations onthe first set andthen successively

transferring the other sets into that area.

Example | - The use of method (b)

10

1 D] F [A [R |] NARRATIVE |

g |8 | [Setindicatonro
27 Oooo | 4] Forforns

o |-|ET|eoet | [|[laleulation __________
&2 | coo=

i |-} 6E(-2888 |8 | | _Accumuiete pemedt ...
67| oooo | & Subtract | Lrom counter

o |40t cos & | | ZE el e b
37| coor | & Fick up rmodifying constant

;3 || 84| 2002 | & Modify instructions
64| oolto 8

e [BLO0|.6500 | B | Bbpent cxalaliomfon nexksebsfilih

Part 4 3165(2.64)

Thedata is held under R.R.N. 4. Theresult is accumulatedin word 0 block 6, which is initially

zero. Word 0 block 5 contains 000 000 000 010. This isused as a counter, allowing the calculation

to be performed on ten sets of data.

Word 1 bloek 5 contains 000 000 000 005.

five so that they refer to the next set of data.

Example 2 - The use of method (c)

1+ Jol F T a TRT T NARRATIVE 1
- . — i oy —
———
7, |- SO E0EE & | Teansferselioflite . ..
5 | pooo |ro lo working avea
000 10
/3 |- 37 | eco0 |0\ N _ e _____
&2 | oool |10
PR WL L _Prform caleulotion, __________
62 | ool |/o and accumulate
b4 | oooo & yresult
/5 i it S
37 | coco2 /a
49 | oooz | ra
/6 il i Bt == HEEEEEEEEE TS
&9 | ooa4 | /o
/? __._é_q-.. -_.o_o_o_o__ __6__ J _____________________________
&7 | oooo | & Subtract | from counter
+ £ Caloulars
o |4l 01| 020 | B | ZERE TR e
37| ccol | & W Modify Lransfen
/g ||eelooz | B | instruction
Aeoeat calcwlatlon
4loo | ootz | B ﬂe’it set a:z‘ data #or

This is a constant used to modify the addresses by

The datais heldunder R.R.N. 4. R.R.N, 10 isusedas aworking area. Theresultis accumulated

in word O block 6, which is initially zero.

Word 0 block 5 contains 000 000 000 010.

to be performed on ten sets of data.

Word 1 block 5 contains 000 005 000 000.

This is used as a counter, allowing the calculation

instruction, so that it transfers the next set of data to the working area.

It is sometimes convenient to modify the function part of an instruction.

This is a constant used to modify the transfer

has the constant D| F

For example if Dl F -
the instruction pair _|62_| oo | 9
42 | oooo

010 000 000 100 added

- to it, it becomes: Y (=00

3165(2.64)

R
63 o/o0 _?_
42 | 0100 g8

Part 4

11

Example The function digits may be modified in a tape program whenthe deck addressisgivenas
a parameter. The following program would ensure that the correct Deck Address Ready indicator

is tested. The deck address is in the least-significant digit position of word 0 block 9.

[ol F [A TRT T NARRATIVE 1

— i Tt = —

[g ||87| 0002 |G| | Goter qekadiess T "
s4 | ooro Shiff 7o regurred position in word

9 || 88|.2232 | B| | /tadify indlicator fest instruction

88 |ElEi| e R =kl B R L iadiiviiisisiiiviiiivioves; SRS

It is also possible to subtract the modifier instead of adding it, and to use negative modifiers.
As there are two instructions to a word, care mustbe takento ensurethat the modifying constant is
correctly positionedfor modifying the required instructions. When arithmetic is performed, a word
of program is treated as a twelve-digit number. This means that carries may occur between the
two instructions in aword. Because of this, particularly whenusing negative modifiers, the modifi-

cation should be carefully checked to ensure that the required result will be achieved.

Examples

To modify instruction pair

D[F A R D[F A R
37| o024 | 8 ¢ 37| ooulk
e HEET 29 5 P P oo o
47| o009 |10 42| 0029 | /o

Add a constant of 000 020 000 020, or subtract a constant of 999 979 999 980.

To modify instruction pair

D] F A R D[F A R
|37 | 024 | 8_ to .| 37| 0044 | B
42| oo29 | /o 42 | coog | fo

Add a constant of 000 019 999 980 or subtract a constant of 999 980 000 020.

Useful Instructions for Modification 4.3.1
Functions 66 and 67

These instructions are often used for modification, since they provide a convenient means of

modifying by one the address of an instruction in the least-significant half of a word.

12 Part 4 3165(2.64)

Example

| D F A R NARRATIVE
L e B I
— e —] ——— T T]
o 4|36 | 0007 | B| | _Test 6 Columnsfead
4| 27| o001z | B Test & Colurmrns Missed
4| oo | poes | B
6 S USRI [— e |] e e e e o o o o e et - — —— i ——— - ——
7 . _él __0_007 =3
43| ools | = Store ﬁegi.sf’e:ﬂ Cin lA.S.
= S P SN T | L e L T
—-_‘———-/—_‘\-“____——‘-_,—F__—'%—-_\

Notice that in this case the 67 instruction is modifying the instruction contained in the second
half of its own word. The two instructions are transferred to CR1 and CR2 as soon as control is
transferred to word 7. This means that the second instruction is obeyed the [irst time in its
unmodified form, since it is already in CR2 when the 67 instruction is obeyed. The contents of
Register C are therefore stored in word 13 block 3 the first time, followed by words 12,11,10......

when the instructions are subsequently obeyed.

Function 41
The use of the 41 instruction to store the contents of Register A following a control change

gives an extremely useful form of modification.

As was explained in Part 2 under Control Registers, when two single-length instructions have
been obeyed and control is transferred to the following word, Register A contains the lasttwo

instructions to have been obeyed each with one added to them.

Consider the program

10 37| ooz24 | /2

62| ocorq |23

@4l goio | 3

The 41 instruction effectively causes both instructions in word 10 to have 1 added to their

addresses.

3165(2.64) Part 4 13

If it is required to modify by one the address in the first instruction only, this can be achieved

as follows:

o |37 2 |1z

62 9 23
41 /0 (=]

&7 10 e

Modification can also be effected by using a 41 instruction after certain double-length instructions.

The following table shows the contents of Register A following the control change after these

instructions have been obeyed.

Function Contents of Register A

45 The 45 instruction with the addresses in both halves
increased by the number of words transferred. If the
number of words is specified as zero, the addresses are

each increased by 20.

80 or B4 The 80 or 84 instruction with the I.A.S5. address increased
by the number of words transferred and the drum address

increased by the number of decades transferred.

81 or 85 The Bl or 85 instruction with the 1,A.S, address increased
by the number of words transferred less one, and the -

drum address increased by the number of decades transferred.

Example
| D] _F A R
[o]
B[] 2 0008 |8
5 | oooo | 9
41| oocog | B
Q SO (B | il S22

The 41 instruction causes the addresses in both halves of the 45 instruction to have 15

added to them.

14 Part 4 3165(2.64)

Demodification 4.3.2

If a section of program which has been modified is to be used again later in the program, then
it is necessary that it should be reset so that its effect is the same as the first time it was obeyed,
before any modification took place. For example, a card-read program is modified so that
successive sets of six columns are stored in different words of 1.A.S. When the next card is to
be read, the program must be reset so that the first (and subsequent) six columns are stored

in the correct words in 1.A.S.

The process of resetting the program is termed demodification and can be achieved as follows:

(a) Instructions can be included before modification takes place which set the instructions to

their initial values, thus eliminating any previous modifications.

(b) Instructions can be included after modification which reset the instructions in readiness

for the next time that they are obeyed.

(¢) The form of the modification can be such that the newly formed instructions overwrite the

previous instructions, thus eliminating the need for special resetting instructions.

(d) The section of program can be transferred from the drum, where it is stored in an

unmodified form, before being obeyed.

Methad (a) Constants are held which consist of the instructions held in their unmodified form.

Example [l ol £ [_A TR
&5 oolg | B
l‘_] - —-——f - -——— i .
2 o007 | B
s |%]3e| 0007 |8
|37 o012 | B
4| 00| oOvos | B
6 PR PRI I e e —
&
7 |47 | o007 _| &_
43 | o013 | B
8 e s O S e e
0014
g |.|.67[0008 | 5
4102 | ooos | B
ooo7 | B
Il}- __._6_.2 e i e i e
42) ooi2 | =
/5 e | ————— ———
004

3165(2.64) Part 4 15

The instruction to store the contents of Register C, and the counter indicating the number of

times Register C is to be stored, are both set to their unmodified forms using a 45 instruction,

Method (b) This may consist of a technique similar to that used in method (a). Alternatively,
demodification may be achieved by subtracting (or adding if modification consistedof subtraction) the

modifier or its multiple if the instruction has been modified several times.

Example |
| D{ F A R
oooo | 2
17 |87 0000 |2
b4 | oorg a8
65 | oorg a
/8 b A i i

37| oooco |25

The 37 instruction is obeyed in its modified form since it is already in the control registers

when demodification takes place.

Example 2
i Dl F A R NARRATIVE
- T O S — N
57| 0012 Zeroise R@:‘Sfeﬂ =3
B gerT | 1Y D8 BREC T, e
7 / 0000 I'4
66| ocoro | £
/0 i e | I e e e e
62 | oooo | 5 Accumulate result in Kesister &
P A N U
4| 02| ooro | & Return fo add in next quantify
iz ||| 20 | 5| | Accumulation complete . Store result.
37| cooo | /9
5 | L8| oce |a | |\ Bemoctipy

where word 0 block 19 contains a constant of 000 000 000 010. Words 0,1,2 ... 9 of block 5 are

summed in Register B and the result stored in word 10 block 5.

Method (c) Constants are held of the instructions in their unmodified form. The modifiers are
added to these constants in Register B, and the modified instruction is stored in the appropriate

place in the program.

16 Part 4 3165(2.64)

Example

[___| [D] F ; A ILR |
| 37.]. 2000 [% |
54 | 0006
o033/
0 |--1&21 998! =
42 | oolf a
// R _.37_ ______ SRR

EY 37

&2 | oooo | 8

where the required address for the 37 instruction is held in the least-significant half of word 0

block 5.

There is an extension tothis technique which is known as chain modification. Chain modification

can sometimes be used where several instructions need to be modified by the same number.

Example
] [DT F A |
Suppose that x is the modifier The required modification |
and that it is required to could be achieved - o e
perform the following program;: as follows:
R T N S — o
! DLE A B 37| ocore | B
8lrmo] _____ o ¢2| oooo | £
37| (x) ¥ 42| ooo9 | B
| B#% | 000 | __ & &2 | cor7 | B
62| fio+x) 42| oot | B
g| /0
q eult] VRG] (R - —
37
Si o000/
’a _....__4_ _______ e
&2
—]
g| /o0
/6 |- S
37
43| 2oo!
/7 === |- ey
25| ooto

3165(2.64) Part 4 17

where the modifier x is stored in word 0 block 5. When the first instruction has been modified
it is still contained inRegister B. The addition of a specially created constant produces the required
second instruction. This method reduces the number of program instructions, since there is no

need for a 37 instruction to enter a constant to form the second (and subsequent) instructions.

Note When arithmetic is performed on instructions it is likely that the result (an instruction pair)
will satisfy overflow conditions. It should be noted, therefore, that modification of instructions

may cause the overflow indicator to be set.

Modification and Relative Addresses 4.3.3
Modification takes place when the program is obeyed and it is therefore the absolute address

which is modified.

When it is required to modify the address of an instruction to another under the same R.R.N.,

however, the absolute address need not be considered.

Consider
| D F A R D F A R
5 |-.| €8] 0919 | 23| here word 19 block 23 is |oo| oo looe__ —
4| oo | voce | B 0000 | 5

If R.R.N. § is set, say to an I.A.S. address of 224, then when the 66 instruction is obeyedthis
will be modified to 225. Whenprogramming, this may be consideredas modifying the address word 0

block 5 to word 1block 5, and the modification will remain correct whatever the setting of R.R.N.5.

If it is required to modify theaddress of an instructionto another under a different R.R.N., the

modifier cannot be assessed until the relativizer settings have been allotted.

For example to modify

D[F A R Dl F A R
37| ooty |15 to 37| ooiz | 16

and R.R.N. 15 is set to an I.A.S. address of 200, R.R.N. 16 is set to an I.A.S. address of 300, then
it is required to modify absolute address 214 to absolute address 312 i.e. the required modifier
is 88. This type of modification should be avoided, since the modifier becomes incorrect if the

storage is re-allocated.

SUBROUTINES 4.4

A subroutine is a self-contained section of program which can be incorporated into a complete
program. A subroutine can be entered from any point in the main program and is so constructed
that, when the subroutine has been obeyed, a return jump is automatically made to the instruction

immediately following the jump which entered the subroutine.

18 Part 4 3165(2.64)

MAIN PROGRAM SUBROUTINE

‘-ﬁ-
=
=~ e,
=
=

There are two main reasons for using subroutines:

(a) Certain routines are of a general nature and are common to many programs. These
routines are made generallyavailable viathe I.C.T. Subroutine Library. Examples of such
routines are sines, cosines, square roots etc. for scientific applications and P.A.Y.E.
calculation for commercial applications. Details of the types of routines available are
given in Part 5. The use of general purpose routines can save much programming and

testing time.

(b) Certainsections of program may be requiredat several different points in the main program.
Storage space can be saved by making these sections into subroutines, thus storing them

only once instead of storing them separately each time they are required.

The return jump from the subroutine to the main program is effected by making use of the

contents of Register A following the programmed jump to the subroutine.

Suppose that the subroutine starts at word 0 block 17, R.R.N. 3 is set to an I.A.S. address of
100, R.R.N. 17 is set to an L.A.S. address of 150, and that the block in which the program is written

starts at word 0 in LA.S.

"Consider the program:

I D] F A R

o |--|37} @900 3 _
62 | ooyt 3
[sle] 0000 17

/I .lf T R e Sl e g i -

42 | cors | 3

3165(2.64) Part 4 19

The successive

contents of the control registers and Register A are as follows:

370110 620111 004011
620111 Word 110a 004011 Word 110b 370111
004011 Word ll11la 370111 Word I11b 620112
004150 370111 420115 620112 0o4012
Word 150a 420115 Word 150b 004012 004151

Before the first instruction of the subroutine (word 150a) is obeyed, the contents or Register A

are 420115004012,

If these contents are preserved at the beginning of the subroutine, and obeyed

when the subroutine has been completed, control is effectively transferred to the instruction in

the main program immediately following the jump to the subroutine.

Consider now the case where the jump to the subroutine is in the second half of a word:

The successive contents of the control registers and Register A are as follows:

| D[F A R
o |37 | om0 |3
&2 | oolt E
62| 00I3 | 2
/! s et =
4| 00 | cooa | /7

or Fieor Hait 22 Secend alt a3
370110 620111 004011
620111 Word 110a 004011 Word 110b 370111
004011 Word 111a 370111 Word 111b 620112
630113 370111 004150 620112 004012
004150 Word 113a 004012 Word 113b 630114
Word 150a 004012 Word 150b 630114 004151
20 Part 4 3165(2.64)

Before the first instruction of the subroutine (word 150a) is obeyed, the contents of Register A
are 004012630114. If these contents are preserved at the beginning of the subroutine, and obeyed

when the subroutine has been completed, this gives the required return jump to word 12 of the
main program.

It can be seen from the two examples just given that, whether the jump to a subroutine is in the
first or second half of a word, Register A contains the necessary information for the return to the

main program. The first instruction to be obeyed in any subroutine is therefore a 41 instruction.

The 41 instruction stores the contents of Register A in a word specially allocated for the purpose.
This word is known as the Link since it provides communication between the subroutine and the
main program. When the instructions forming the subroutine have been completed, control is
transferred to the link, which restores control to the correct place in the main program.

Example

| Bl F A R '] N A R
3 || 62| c0uq |17 o — -
64 | oaq4 |17
64 | oog7 Al | Qolz |4
i, |- 2519987 L L R Lo
4|00 | oooo | i3 37| coo4 | 3
N~]
6o | orq9/l | /8
R B -] o
=] ooo
b, EBY 2 |E —Ei fﬂﬁ(}— -

The system of storing a link fora return jump makes it possible for subroutines to themselves

make use of other subroutines, there being no theoretical limit to the number of subroutines in

operation at one time.

Example
MAIN PROGRAM BLOCK 10 BLOCK 9

| D] F A R | D[F A R i D[F A R
29 || 62| oo |13 5 |.|4| oo | & 6 || | 0030 | B

&4 | oots |13 37| oot | B 27| ocoot | =2

00 | ooos o oo | oolé
20 .4_L ol [N, _’_.. & .lf e s _‘Zﬂ /7 PR UM [i
42 | 0013)

PR N — e 5 |37 |eccz |3 | | o L | __ .
ey R
n & *|i£ JLALK—} i 30 £ {—[: /—NK—} i

3165(2.64) Part 4 21

It may be necessaryfor the mainprogram to provide data on which the subroutine can operate,
or for it to provide other necessary information. For example, for a general subroutine toprint
one line, the information to be printed must be provided, and also an indication must be given of
the number of spaces required after the line has been printed. Information, other than data, which
is provided by the main program is termed a parameter or key. This communication between

main program and subroutine can be achieved by the following methods.

Using the Relative Addressing System 4.4.1

The subroutine is written assuming that the data or parameters are held in specified words
under a specified R.R.N. The main program ensures that the information is correctly positioned
before the subroutine is entered. The subroutine does not, of course, impose any storage allocation
restrictions on main program since, although it makes reference to a given R.R.N., the main

program is responsible for setting the value of the relativizer concerned.

Inclusion in the Main Program Block 4.4.2
Where there are only one or two data or parameter words, these can be placed inthe program
block after the jump to the subroutine. The parametersare preceded bya jump instruction causing

the parameter words to be by-passed and not obeyed as program instructions.

Example Consider a subroutine which performs the necessary drum parity error procedurefollowing

a drum transfer. Thedrum transfer to be obeyed must be provided to the subroutine as a parameter.

MAIN PROGRAM SUBROUTINE (BLOCK 29)
| D] _F A R] D F A R
B8
;2 |4] 00| oooo |29 -] I I
4|00 | oolig | B
0000 |23 4 | ooos | B
5 =L 280 2 IR ol e =M
f0 | cooo |23 NS s it A ESEAL g
23
e || BT|caq |23 z e _Eé {NK—} e
62 | oot6 |23

The link will contain the absolute form of

[#]s] 00/ & 8

co| ooid | B

NEE

The second half contains the address of the parameter, which canbe easily extracted by program.

22 Part 4 3165(2.64)

Use of Indicators 4.4.3

A subroutine can be written so that if an indicator is set it operates slightly differently from
its operation when the indicator is unset. The main program sets or unsets the indicator to achieve
the required result. For example the programs to evaluate the sine and cosine of an angle are
largely similar and are therefore combined into one subroutine. According to the state of an

indicator, the sine or cosine is evaluated. "

Use of Several Entry Points 4.4.4

As an alternative to using indicatorsit is possible for a subroutine to have several entry points,
corresponding to alternative requirements. Thus, in the first example, it would be possible to
have an entry point at word 0 of the subroutine to evaluate the sine, and an entry point at word 1 of

the subroutine to evaluate the cosine.

Each entry word has a 41 instruction in the first half to store the return to the main program.

The entry points can use a common link since only one entry point is used in any particular case.

Example
1 D[F A R
8l | ______ o
0 4/ | oco3o | B lst entry point,
41 001 oOoic | B
. | #4 | 0020 | B | 2nd entry point.
4l oo | ools | B
2 _ | 4| 0030 | B | 3rd entry point.
4| op| oozl | B
Standard Procedure 4.4.5

The following procedure is used by library routines, and is recommended for all subroutines.

The subroutine is, if possible, written in one block and is headed by a blank block relativizer
word. The block relativizer setting is inserted here by the main programmer. The subroutine is
written without a block number. The user incorporatesthe subroutine into his program in the same
way as he would a block of his own program, allocating a block number for it and setting the
relativizer for the corresponding R.R.N. Where a subroutine extends over more than one block,

R.R.Ns 99, 98, 97 ... are used, the appropriate R.R.Ns being stated on the specification sheet.

Recommended R.R.Ns are used for temporary storage, data, parameters and results. These

are described later (4.7).

3165(2.64) Part 4 23

Indicators are used in the order 19, 18, 17

Unless the state of an indicator is an entry

condition, no assumption is made about the initial states of indicators. Indicators used by the sub-

routine may be in either condition on completion of the subroutine.

Each subroutine is described by a specification sheet for which there are standard forms.

The specification should contain all the necessary information for using the subroutine. The specifi-

cation sheet contains the following information:

Title:
Description:

Entry Points:

Entry Conditions:

Results:

Storage:

Time:

Limitations:

Program

Indicators used:

Error Conditions:

Notes:

STORAGE ALLOCATION

A brief title, giving an indication of what the routine does.
A concise description of what the routine does.

The word at which entry is to be made. If there are several entry points, an

indication of their differences.

Relative addresses of any data or parameters used by the routine. Required

state of any indicators used as entry conditions.
Statement of what results are produced and their relative addresses.

The number of words occupied by the subroutine for program and constants.
The number of words used as temporary storage, the contents on entry being

immaterial.

If possible an exact time for execution of the subroutine or a formula from

which the time can be calculated.

Any limitations of the routine, e.g.caseswhicharenotcateredfor, orlimitations

on accuracy of results.

A list of any indicators used by the subroutine.

Details of error conditions that may arise and of the appropriate action tobe taken.

Any further description required for using the routine.

4.5

When a program is ready to be tested, its storage position on the drum and in ILA.S, must be

allocated. The program is stored on the drum when it is read by Initial Orders, and each block

must therefore be given a drum allocation which does not overlap with that of another block.

1.A.5. allocation is that occupied by the block when it is transierred to I.A.S.

The

Since it is possible

that the whole program cannot be concurrently held in I.A.S., it is possible that several blocks may

share the same I.A.S. allocation.

I.A.S. and on the drum.

Storage should also be allocated for any data areas required in

It should be remembered that any block which is to be specified for the

start of a drum transfer must be stored on the drum starting at the beginning of a decade.

24

Part 4 3165(2.64)

The storage allocation should be recorded, and it is recommended that the I.C.T.storage charts
are usedfor this purpose. Itislikelythat, during testing, some of the blocks may have tobe increased

and the storage allocation modified. Any such changes should be recorded as they are made.

INITIAL ORDERS CONTROL WORDS 4.6

The required storage allocation is communicated to the Initial Orders program by means of
control words. The control words are written on program sheets, punched in program cards and
read by Initial Orders as part of the program pack. The control words include special control
designations which are recognized by Initial Orders. They provide information for Initial Orders

and are not stored in the machine as program.

The most common forms of the control words are described helow. Full details of all possible
uses of the control words, together with a full description of the operation of Initial Orders and the

possible error conditions which can arise are given in the Initial Orders Manual.

Control Designation ‘R’ 4.6.1

The control word having control designation 'R’ is termed a relativizer word. Its purpose is
to provide Initial Orders with the ILA.S, and drum startingaddresses for a particular R,R.N. These
relativizer seitings are recorded in the machine and used during program reading to convert
addresses referring to that R.R.N. from relative to absolute form. The relativizer control word must
be read before any instruction referring to that R.R.N. The relativizer control words are normally
punched threeto a card andread in at the start ofthe program pack before the program instructions.

During program testing, it may be preferable to punch only one relativizer control word to a card.

The form of the relativizer control word is as follows:

Dl F A R
/A 8. Startn
R Adclress

Drum Startingl
Address

Hence the conirol word:

o/ 1315 23

sets relativizer 23 to an 1.A,S. starting address of word 134 and a drum starting address of word
11315. A block may be stored starting at any word on the drum and therefore it is necessary to
specify a drum word (not decade) address in the relativizer word. Note thatthe drum word address

may exceed four digits and that it can therefore overflow into the function digits.

3165(2.64) Part 4 25

Instead of writing the absolute I.A.S.and drum addresses in a relativizer word, a relativizer can
be set by making it relative to another relativizer which has previously been set. To achieve this

the previously set relativizer is specified in the relativizer column of the first half of the control word.

Thus the control words:

Bl F A R
Rl ___|. 0200 |
3500 |/0
Lo N Ll 8
ooze |32

(a) Set relativizer 10 to an I.A.S. word address of 200 and a drum word address of 3500.

(b) Set relativizer 32 to an I.A.S. address 100 more than that of relativizer 10 and a drum
address 26 more than that of relativizer 10. Hence relativizer 32 is set to an I.A.S. word

address of 300 and a drum word address of 3526.

This technique is known as the use of relative relativizers. The use of relative relativizers is
strongly recommended particularly when several blocks are stored consecutively on the drum.
Their use can save many tedious alterations to the relativizer words if a block has to be extended

during testing.

Example Consider the control words:

DI _F A R
o - T
0000 =3
Rl___|9023 |5
o023 |/6
R|___| Coak |16
oo4k | /19

which achieve the following settings:

Relativizer I.A.S. Address Drum Address

5 0 0
16 23 23
19 67 67

26 Part 4 3165(2.64)

Suppose now that an alteration is made to block 5 which makes it two words longer.
This means that the relativizer settings must be changed to:

Relativizer I.A.S. Address Drum Address

5 0 0
16 25 25
19 69 69

assuming that the blocks are still to be held consecutively on the drum and in 1.A.S.

This can be achieved as follows:

D] F A R
Bl el 2000
0000 5
Bl .|/0g9es | 5
0025 | /6
R | co%e | &
(ala¥/ 772 /9

Note that only the control word immediately following that for R.R.N, 5 has been altered.

Control Designation ‘B’ 4.6.2
The control word having control designation 'B' is termed the block relativizer word., A block
relativizer word should appear at the head of every block of program. It is standard practice to

reserve the first card of the block (the B-card) for the block relativizer control word only.
The block relativizer word serves two main purposes:

(a) It indicates to Initial Orders the drum word address for storing the first word of the
following block of program. The remainder of the block is stored in consecutive words

on the drum following the first word.

(b) 1t specifies the [.A.S. and drum addresses for the current block relativizer. These are
used during reading the block to convertany instructions with 'B' in the relativizer column
from relative to absolute form. The block relativizer settings are recorded in the machine

as those for R.R.N.2. R.R.N.2 must therefore not be used as an ordinary relativizer.

The form of the block relativizer control word is as follows:

D F A R 5 - X .
-A.5. 5farte
B| | Address Hence the control word: |g 0100
B N = B|___|.o/00 L
Address 3850

(a) Sets the starting address on the drum for the program block at word 3240.

(b) Sets relativizer 2 (i.e. relativizer B)to an[.A.S.address of 100 and a drum address of 3240,

3165(2.64) Part 4 27

A block may be stored starting at any wordon the drum and therefore it is necessary to specify
a drum word (not decade) address in the block relativizer word. Note that the drum word address

may exceed four digits and it can therefore overflow into the function digits.

Instead of writing the absolute I.A.S. anddrum addresses in a block relativizer word, the block
relativizer can be set by making it relative to a previously set relativizer. To achieve this the

previously set relativizer is specified in the relativizer column of the first half of the block relativizer

control word.

Thus the control words:

D F A R
R|___|.0032 | __

o160 | /4
e e

4

1%
(o]
(s}
»
0

(a) Set relativizer 14 to an I.A.S. address of 32 and a drum address of 160.
(b) Indicatethat the following blockof program is tobe stored startingat word 190 on the drum.
(c) Set the block relativizer to an I,A.,S. address of 52 and a drum address of 190.

It is strongly recommended that block relativizers should be set relative to the relativizer

corresponding to their own R.R.N.

Example Suppose that relativizer 10 has been set by the control word

DI F A R
R 0380
50/0 /0

Then consider the following in block 10

B[_F A R
8] . |.e000 |i0_
0000

37 | ooig =3

35| oor12 2

The first word of program is stored in word 5010 of the drum.

28 Part 4 3165(2.64)

The block relativizeris set to the same I.A.S.and drum addresses as relativizer 10. Since the

B in the relativizer column refers to block 10 this is evidently what is required.
The first word of program is stored in word 5010 of the drum as 370399350392.

This technique eliminates the need for altering the block relativizer control words if the drum

allocation of the blocks is altered.

Control Designation ‘F’ 4.6.3
The control word with designation 'E' is termed the entry word, The entry word is read after

the last programword has been read. It isstandardpractice to reserve thelast card of the program

pack (the E-card) for the entry word only.

The purpose of the entry word is to inform Initial Orders which part of the program is to be

transferred to I.,A.S. and which word of the program is to be obeyed first.

The form of the entry word is as follows:

D F A R
1.A.S.
E Address

No-of | Dram Decade
Pecodes flelress

The effect of the E-word is as follows:

(a) The specified number of decades are transferred from the specified drum decade address

into I.A.S. starting at word 0.

(b) A jump instruction is set up ready for control to be transferred to the specified I.A.S. word

when the Start button is pressed.

Hence the control word:

D[F A R
£ 0020
12 0zZ90

(a) Transfers 120 words of program from word 2900 on the drum, and stores them in words
0-119 in [LA.S.

(b) Prepares to transfer control to word 20 in [.A.S.

Once the instruction has been set up for controlto be transferredto the specified word of I.A.S.
the Initial Orders routine has been completed. After the Start button is pressed the computer is
controlled by the user's program. It is possible to transfer a maximum of 200 words of program

to I.A.S. using the E-word transfer. Any further transfers must be included in the program.

3165(2.64) Part 4 29

It is permissible to use relative addresses in the entry word although this is not generally

recommended.

Thus the control words:

D[F A R
A ...0000 |
so0ooc | /o

Bl ool O0BE |48
oozl /5

£l __|. 8000 |15
20 | pooo | /0

(a) Set relativizer 10 to an I.A.S. address of 0 and a drum word address of 6000.

(b) Set relativizer 15 to an I,A.S. address of 31 and a drum word address of 6031,

{c) Transfer 200 words of program from drum words 6000-6199 to I.A.S, words 0-199.

(d) Prepare to enter the program at word 31 in L.A.S. (i.e. at word 0 block 15).

If a program has already been stored (and not overwritten) on the drum, then it is possible

to enter it by reading the E-word under Initial Orders,

recommended that:

In order to make use of this facility it is

(a) The E-word should be punched on a separate card from the last program words.

(b) It should have a card number 1 so that it will satisfy the sequence check (see later) when

not preceded by other cards.

{c) Absolute addresses should be used in the E-word. If relative addresses are used then the

relativizer cards must be read first to set the necessary relativizers.

The above facility can be particularly useful during program testing when computer time can be

saved by reading the program once and then entering it several times to test various conditions.

Control Designation ‘C’

4.6.4

The control word with control designation 'C' indicates to Initial Orders that it is required to

zeroize a specified number of words on the drum. Its effectis exactly similar to writing a number

of consecutive zero constants in a block of program, the use of the C-word being more convenient,

however, particularly if there are a large number of words to be zeroized.

30

Part 4

3165(2.64)

The form of the C-word is as follows:

Nurn Ber of words
C |0 £ zervized

the contents of the second half of the C-word are ignored by Initial Orders.

Example I D| F A R
8 il
0024
o-23 |E|_|-002%_
g| /0
24 I I i =
37| o030 | &
2| ool
26 || 67| cote | 3
57| ooof

The C control word causes the first 24 words of block 18 to be zeroized on the drum.

Control Designation ‘F 4.6.5

When the program instructions are all written in absolute form they can be punched with five words
to a card instead of three. When the program words are punched five to a card they are said to be
punched in fast-read form. The control word with designation 'F' indicates to Initial Orders that a
specified number of words are punched in fast-read form. The remainder of the card following
the F control word shouldbe leit blank and the words in fast-read form should start on the following
card, When the fast-read words have been punched the remainder (if any) of the last card should
be left blank and normal punching of three words to a card should start on the following card.
When program is punched in fast-read form each word occupies only 12 columns on a card. The
words must be punched in the form in which they are held in the machine, i.e. addresses must be
absolute, the designation shouldbe added in to the most-significant digit of the address and negative
constants should be punched in complementary form. During fast read, a blank word of 12 columns

is stored as a zero word on the drum.

The form of the F control word is as follows:

the second half of the F control word is blanik.

3165(2.64) Part 4 31

Example The control words

B F A R

-2 O et
2000

Ll L .. A -

cause the following 190 fast-read program words to be stored on the drum starting at word 2000.

Note It is normally recommended that fast-read form should be used only when a program has
been fully tested. There is a library program available for punching program stored on the drum
into fast-read cards. There is a standard format for fast-read cards and this is described in the
Initial Orders Manual.

Control Designations ‘P’ and ‘M’ 4. 6. 6
Control designation 'P' indicates to InitialOrders that a positive constant is to be stored in the
program. This constant is normally the actual number written in the Functionand Address columns

on the program sheet.

Exenigle BLOCK 30
| Dl F | A R
o 1P| ze |
02| 1964

causes a constant of 000 026 021 964 to be stored in word 10 of block 30.

However relativizers may be included in either or both halves of the word, Initial Orders
treating the constant as an instruction-pair. The two halves are therefore normally relativized
by the I.A.S. settings of the specified R.R.Ns. However if digit position 1 is an 8, the constant is
treated as a drum transfer instruction and the second half is relativized by the drum setting of the
gpecified R.R.N.

It should be noted that there is no carry between the two halves of an instruction-pair.

Examples Suppose that R.R.Ns 19 and 20 are set by the following control words:

D F A R
Rl ___| . 230|___

430 | 19
R "7

or /350 | 20

32 Part 4 3165(2.64)

(a) BLOCK 16
| D[F A R

Loy

causes a constant of 000000000240 to be stored in word 5 of block 16

and b) BLOCK 40
| 5T F A R
/ 610
26 f. _._z_ __(f____ .._I_?_
22 | zo

causes a constant of 124840000140 to be stored in word 26 of block 40

and c) BLOCK 32
] D] F A R
&€42 | 20
,? ﬁ ...B_?_ __6.._.___. P—
0 19

causes a constant of 896660000043 to be stored in word 19 of block 32.
Note If the constant requires a drum relativizer setting, then digit position 1 must be an 8.

Control designation 'M' indicates to Initial Orders that a negative constant is to be created and

stored in the program.

Example BLOCK 10
T o] F A R
30 ﬂ s A st e e [eS——
/12

causes a constant of 999999999988 to be stored in word 30 of block 10.

Relativizers may be used in either half of the word as for the P designation.

Example BLOCK 48
i 5] F 2 R
26 M| ___|_____ i
30 34

where R.R.N.34 has an L.A.S, setting of 60 causes a constant of 999999999910 tobe stored in word 25
of block 48.

Note When a constant with designation M has relativizers specified, it is converted to

absolute form before negating.

3165(2.64) Part 4 33

Initial Orders Sequence Check 4. 6.7

While reading the program pack, Initial Orders carries out a sequence check to ensure that the
cards are in the correct order. It is for this purpose that the block number and the card numbers
within the block are punched on the program cards. In order for the sequence check to be passed
an end of block marker should also be punched on the last card of each block. The end of block
marker takes the form of a punching in column 17 which has a non-zero numeric component. The

following conventions are recommended for the end of block marker:

Last card of a subroutine - Y
Last card of a complete program - 7

Last card of a block other than either of above cases - X.

The end of block marker should be written on the program sheet beneath the card number for
the last block.

Example

C] D] F A R
| Bl | 7.
0
2 .| 45| o002 | 3_
I Z)| o013 | B
3 .) A —
" __|37 | %0c0 | 2
(x| 48
4|00 | oooo |zi

34 Part 4 3165(2.64)

It should be noted that all eards must have a card number, including those cards which contain

control words only.
The following conventions are recommended:

(a) Relativizer cards at the head of the program pack are numbered as if they were a block
of program cards, the last relativizer card being punched with an end of block marker. It

isusualto regardthe relativizer cards asblock 0.

(b) The E-card should be regardedas a one wordblock and should not be numbered as the last

card of the last program block. It is usual to make the E-card card 1 of block 999.

It is possible to include cards between consecutively numbered cards by including a suffix in a

card columnallocatedfor the purpose. Details of howtodo thisare given in the Initial Orders Manual.

Suffixed cards should only be included during program testing, the cards being renumbered

when the program is proved.

RELATIVIZERS 4.7
There are 99 relativizers with R.R.Ns 1 to 99, which may each be set to an I,A.S. and drum

starting address by means of relativizer control words.

Certain standards have been adopted concerning the use of R.R.Ns in the general purpose

routines. These are as {ollows:

R.R.N.1 - This is used as a block for temporary storage,

i.e. storage for counters and intermediate results.

R.R.N.2 - This is used by Initial Orders for storing the block- relativizer settings

R.R.N.2 should not therefore be used as a relativizer number.

R.R.N.3 - Input data to a subroutine.
RR.Ns4to9 - Any other data areas required, input or output.
R.R.Ns 99, 98...... - R.R.Ns given to subroutine block if these are necessary.
Relative Addressing and the use of General Purpose Subroutines 4.7.1

It is evident that, although the allocation of a block number for the subroutine can normally be
left to the user, the subroutine itself often needs to refer to data for which an R R.N. must be

specified. When this is necessary the above conventions are adopted.

When several general purpose routinesare being incorporated into aprogram itis possible that
different routines may make different uses of the same R.,R.N, This is a problem which can be

easily overcome by resetting the relativizers using relative relativizers.

3165(2.64) Part 4 35

