1301 Programmers Manual
Section = Part Five

Original PDF by Roger Holmes
Jan 2009

Sub Sections and HTML version
by Rod Brown

Supplied by ict1301.co.uk
from the pages of the

ICT 1301
Resurrection Project

Part 5

programmers reference manual FACILITIES
Contents
Page

5.1 THE I.C.T. SUBROUTINE LIBRARY ... 1

5.1.1 Index of Library Routines ... 1

5.1.2 Subroutines ... 2

5.1.3 I.C.T. 1300-series Library Subroutines 2

Specification Sheets 3

Flowcharts and Program Sheets 3

Entry to and Exit from Main Program 3

Storage and Relativizers 4

Indicators 4

5.2 AUTOCODES 4

5.2.1 Rapidwrite 6

5.2.2 TAS cre ene een 6

5.2.3 MPL 7

5.2.4 MAC 8

5.3 P.P.F. PROGRAMS AND INPUT/OQUTPUT ROUTINES 8

5.3.1 P.P.F.Programs WS B9 am e wm ows B

5.3.2 Input/Output Routines wev wer wer wn 9

5.4 MAGNETIC TAPE CONTROL AND UTILITY ROUTINES ... 10

3165(2.64)

5.4.1 Tape Layout «oi i cr ser eer wee .. 10
Tape Labels .o swe wwe son swe wie wer wew ase wws 10
Block Layout v tiv eee eer eee wee . 10
Record Layout v ver ver een een aee . 11

Part b

Contents continued

5.4.2 Tape Housekeeping Routines

Job Set-up cee e eed e e
Write Program to Tape
Magnetic-tape Sorting sas wew e
Merging Using Four Tape Decks ...
Merging Using Three Tape Decks...
Sorting Using Three Tape Decks

and the Magnetic Drum

5.5 GENERATOR ROUTINES

5.6 DIAGNOSTIC ROUTINES ...
5.6.1 Validity Check
5.6.2 Proving Storage
5.6.3 Memory Dump
5.6.4 Trace Routine

5.6.5 Program Updating Routine .

5.7 UTILITY ROUTINES
5.7.1 Division Routines ...
5.7.2 Parity Error Routines
5.7T.3 Zero Suppression Routines
5.7.4 Punching Program into Fast-read Cards ...
5.7.5 Sorting Routines
Merging Sortov veh win cee eid e el
Extraction Sort P oEE wew @nE 9as
Exchanging Sort
5.8 COMMERCIAL ROUTINES
BBAd PANE. we s e
5.8.2 Graduated Pension Contributions

5.8.3 Sterling and Decimal Conversions

5.9 MATHEMATICAL AND STATISTICAL ROUTINES
5.9.1 Floating Point Arithmetic ...
5.9.2 Matrix Arithmetic ...
5.9.3 Double-length Arithmetic ...
5.9.4 Special Mathematical Routines
5.9.5 Manchester AutoCode ...

lllustration

Figure 51 Sorting Using Three Tape Decks
and the Magnetic Drum

Part b

Page

11
12
13
13
13
13

14
14

15
15
15
15
16
18

18
19
19
19
20

20
20
22
22
22
22
23

23

23
23
24
24
25
25

14

3165(2.64)

Part 5

Software
Facilities

THE LC.T. SUBROUTINE LIBRARY 5.1
There is a library of general purpose programs written for the 1300-series computers which

are available from I.C.T.

The majority of these routines are subroutines which can be incorporated into the user's own
program. There are also programs which are complete in themselves and for which theuser need
only supply data. Autocodes, which provide facilities for programs to be written in a simpler
form than machine-coded instructions, are available and are discussed in more detail later. This
part of the manual does not cover every routine in thelibrary but is intended as a guide to the types

of routines available.

Index of Library Routines 5.1.1

An index to the routines available is supplied to 1300-series users, together with Specification
Sheets that contain sufficient information about each routine to enable the user to select an
appropriate routine for his purpose. In some instances a broad class of routines will be the

subject of a general paper explaining the best use of each individual routine within that class.

Each individual routine is classified and numbered. The class letter gives the functional
division, This is followed by a two-digit number allocated to further identify the function of the
routine. The final two-digit number differentiates between routines that have similar functions or

achieve the same result in different ways.

For example, a group of routines for printing control is classified as follows:

Af--/-- Indicates an Input/Cutput routine.

A/02/-- Indicates a print routine,

A/02/06 Prints on one bank only and spaces n lines.
A/02/07 Prints on two banks and spaces n lines.
A/02/08 Prints on three banks and spaces n lines.

3165(2.64) Part 5 1

Subroutines 5.1.2

A subroutine is a self-contained section of program which may be used more than once in a
program, or has a general application and can form part of a number of different programs. In
scientific work, for example, the trigonometrical functions sine and cosine, and square roots

are required in many routines.

Once programmed as subroutines, any program can include them. In commercial data
processing, thereis not quite so much scope for generalized subroutines. The P.A.Y.E. calculation

is one example of a standard routine that can be incorporated into a program.

On the 1300-series Computers, division has to be programmed and is written as a subroutine.
Input and output (P.P.F. programs) are also programmed in subroutine form.

The object, therefore, of a subroutine can be either:-

(a) To save storage space by writing a section of program once only and jumping to that

section whenever it is required in the main program, or,

{b) To make programming quicker and easier by incorporating pre-programmed subroutines

when available.

Subroutines are useful inasmuch as they can:

(a) Save storage space

(b) Save programming time

(c) Save testing time, as a library subroutine is well planned and fully tested,

(d) Be used time and again with no further effort.

I.C.T. 1300 - series Library Subroutines 5.1.3

TheI.C.T. 1300-series Subroutines comprise a collection of well tested routines, which cover:-

Input/Output

Magnetic Tape

Commercial (P.A.Y.E. etc.) Routines
Arithmetical (Division ete.) Routines
Mathematical Routines

Utility Routines

Diagnostic Routines.

Library routines should be used whenever possible for they are proved routines planned to
economize in the use of storage space and computer time. By linking them to a main program,
the user will reduce considerably the amount of programming and testing time required to achieve

successful running of the program.
A Library subroutine complies with a standard format sothat a complete subroutine comprises:

Specification Sheet Flowchart

Program Sheets Program Card Pack.

2 Part 5 3165(2.64)

Specification Sheets

The following information is shown as fully as possible on all subroutine specification sheets:-

(a)

(b)

(c)

@

(e)

(f)

(e)

(h)

Entry Points

The entry point or points are stated. If more thanone, the distinction betweenthemis stated.
Entry Conditions

Locations of variables and parameters assumed by the subroutine on entry are given; also
details of the required indicators, and their state.

Results

Results produced by the subroutine together with locations occupied are given.

Storage

The number of words required for the storage of the program and constants is given.
Under the heading of temporary storage is shown the number of words used as working
space and whose original content is immaterial.

Time

If possible, either exact timings are given or else formulae from which processing time
can be calculated.

Limitations

Any limitations in the size of factors and accuracy of results are given.

Error Conditions

A brief account of tests made by the subroutine for any error conditions, together with
the action taken if such errors are detected, is given.

Notes

Any other necessary information about the subroutines, not given in other sections, is

included here.

Flowcharts and Program Sheets

The specification sheet should normally contain sufficient information for the user to be able

to incorporate the subroutine into his program. If, however, further knowledge of the subroutine

is required thenflowcharts and program sheets can usually be obtained. Some programming points

relevant to subroutines are considered below.

Entry to and Exit from Main Program

The instruction to jump from the main program to the first instruction of a subroutineis a

normal jump instruction.

For example, either

C | D| F A R C I Dl F A R

oo 0000
70 —-4— _—— e _’_7_ or 21) TESUESEII N

4| 00 0000 17

would effect a jump from the main program to the first instruction of a subroutine inI.A.S.location
0 of block 17.

3165(2.64) Part § 3

I.C.T COMPUTERS

sé:lnloss R RRY.E (weekly)- ivPuT e 7 i
PROGRAM . SHEET No. /1
SHEET PROGRAMMER:- / /
C 1 D F A R NARRATIVE

o |-|eo| o000 | | | Basic Neek Mumber
00 | 00XX

; |-|ee|eeoe | | | X*=OferMormmal
00 | 000¥ or = / for Week ! Pesignalion

5 |-|ee 0000 | || Number of Holiday beeks
00 | 000X

3 || 90| 00LE | __ Week | Free oy _____________
58S | o000

g |-Joo|geee | | |.Gress Wage brought forward ___
88 | D000

s |.|oo|ooee | | | Gross Mage this week
55 | pooo

6 |-|0o|oege | | [Tex brought forward _ ______
8S | oooo

5 |-|oo|oce | | | Totel Deduchins __ ________
85 | Dooo

Figure 49: INPUT INFORMATION

Part 4 3165(2.64)

3165(2.64)

I.C.T COMPUTERS

1300 108 BLOCK No. 20
SERIES 2RY.E -
PROGRAM RAVE (ueek fy) ~OUTPUT SHEET No /[
SHEET PROGRAMMER ;- / /
C 1 F A R NARRATIVE
oo | ccce Gross carried Lorward
0 e tl] Wt o R U (R | /oo eoimpiot 1L 752 et O
55 | Dooo
/ 00 | OFEE Tax carried forward
55 | 0000
2 oo | 00£E Tax 1his week (% = 0for deducthion
85 | 000%# or = | for refund)
3 | oo |oose | | | Metmage
55 | pooo

Figure 50: RESULTS OF CALCULATIONS

Part 4

97

Part 5

programmers reference manual FACILITIES
Contents
Page

5.1 THE I.C.T. SUBROUTINE LIBRARY ... 1

5.1.1 Index of Library Routines ... 1

5.1.2 Subroutines ... 2

5.1.3 I.C.T. 1300-series Library Subroutines 2

Specification Sheets 3

Flowcharts and Program Sheets 3

Entry to and Exit from Main Program 3

Storage and Relativizers 4

Indicators 4

5.2 AUTOCODES 4

5.2.1 Rapidwrite 6

5.2.2 TAS cre ene een 6

5.2.3 MPL 7

5.2.4 MAC 8

5.3 P.P.F. PROGRAMS AND INPUT/OQUTPUT ROUTINES 8

5.3.1 P.P.F.Programs WS B9 am e wm ows B

5.3.2 Input/Output Routines wev wer wer wn 9

5.4 MAGNETIC TAPE CONTROL AND UTILITY ROUTINES ... 10

3165(2.64)

5.4.1 Tape Layout «oi i cr ser eer wee .. 10
Tape Labels .o swe wwe son swe wie wer wew ase wws 10
Block Layout v tiv eee eer eee wee . 10
Record Layout v ver ver een een aee . 11

Part b

Contents continued

5.4.2 Tape Housekeeping Routines

Job Set-up cee e eed e e
Write Program to Tape
Magnetic-tape Sorting sas wew e
Merging Using Four Tape Decks ...
Merging Using Three Tape Decks...
Sorting Using Three Tape Decks

and the Magnetic Drum

5.5 GENERATOR ROUTINES

5.6 DIAGNOSTIC ROUTINES ...
5.6.1 Validity Check
5.6.2 Proving Storage
5.6.3 Memory Dump
5.6.4 Trace Routine

5.6.5 Program Updating Routine .

5.7 UTILITY ROUTINES
5.7.1 Division Routines ...
5.7.2 Parity Error Routines
5.7T.3 Zero Suppression Routines
5.7.4 Punching Program into Fast-read Cards ...
5.7.5 Sorting Routines
Merging Sortov veh win cee eid e el
Extraction Sort P oEE wew @nE 9as
Exchanging Sort
5.8 COMMERCIAL ROUTINES
BBAd PANE. we s e
5.8.2 Graduated Pension Contributions

5.8.3 Sterling and Decimal Conversions

5.9 MATHEMATICAL AND STATISTICAL ROUTINES
5.9.1 Floating Point Arithmetic ...
5.9.2 Matrix Arithmetic ...
5.9.3 Double-length Arithmetic ...
5.9.4 Special Mathematical Routines
5.9.5 Manchester AutoCode ...

lllustration

Figure 51 Sorting Using Three Tape Decks
and the Magnetic Drum

Part b

Page

11
12
13
13
13
13

14
14

15
15
15
15
16
18

18
19
19
19
20

20
20
22
22
22
22
23

23

23
23
24
24
25
25

14

3165(2.64)

Part 5

Software
Facilities

THE LC.T. SUBROUTINE LIBRARY 5.1
There is a library of general purpose programs written for the 1300-series computers which

are available from I.C.T.

The majority of these routines are subroutines which can be incorporated into the user's own
program. There are also programs which are complete in themselves and for which theuser need
only supply data. Autocodes, which provide facilities for programs to be written in a simpler
form than machine-coded instructions, are available and are discussed in more detail later. This
part of the manual does not cover every routine in thelibrary but is intended as a guide to the types

of routines available.

Index of Library Routines 5.1.1

An index to the routines available is supplied to 1300-series users, together with Specification
Sheets that contain sufficient information about each routine to enable the user to select an
appropriate routine for his purpose. In some instances a broad class of routines will be the

subject of a general paper explaining the best use of each individual routine within that class.

Each individual routine is classified and numbered. The class letter gives the functional
division, This is followed by a two-digit number allocated to further identify the function of the
routine. The final two-digit number differentiates between routines that have similar functions or

achieve the same result in different ways.

For example, a group of routines for printing control is classified as follows:

Af--/-- Indicates an Input/Cutput routine.

A/02/-- Indicates a print routine,

A/02/06 Prints on one bank only and spaces n lines.
A/02/07 Prints on two banks and spaces n lines.
A/02/08 Prints on three banks and spaces n lines.

3165(2.64) Part 5 1

Subroutines 5.1.2

A subroutine is a self-contained section of program which may be used more than once in a
program, or has a general application and can form part of a number of different programs. In
scientific work, for example, the trigonometrical functions sine and cosine, and square roots

are required in many routines.

Once programmed as subroutines, any program can include them. In commercial data
processing, thereis not quite so much scope for generalized subroutines. The P.A.Y.E. calculation

is one example of a standard routine that can be incorporated into a program.

On the 1300-series Computers, division has to be programmed and is written as a subroutine.
Input and output (P.P.F. programs) are also programmed in subroutine form.

The object, therefore, of a subroutine can be either:-

(a) To save storage space by writing a section of program once only and jumping to that

section whenever it is required in the main program, or,

{b) To make programming quicker and easier by incorporating pre-programmed subroutines

when available.

Subroutines are useful inasmuch as they can:

(a) Save storage space

(b) Save programming time

(c) Save testing time, as a library subroutine is well planned and fully tested,

(d) Be used time and again with no further effort.

I.C.T. 1300 - series Library Subroutines 5.1.3

TheI.C.T. 1300-series Subroutines comprise a collection of well tested routines, which cover:-

Input/Output

Magnetic Tape

Commercial (P.A.Y.E. etc.) Routines
Arithmetical (Division ete.) Routines
Mathematical Routines

Utility Routines

Diagnostic Routines.

Library routines should be used whenever possible for they are proved routines planned to
economize in the use of storage space and computer time. By linking them to a main program,
the user will reduce considerably the amount of programming and testing time required to achieve

successful running of the program.
A Library subroutine complies with a standard format sothat a complete subroutine comprises:

Specification Sheet Flowchart

Program Sheets Program Card Pack.

2 Part 5 3165(2.64)

Specification Sheets

The following information is shown as fully as possible on all subroutine specification sheets:-

(a)

(b)

(c)

@

(e)

(f)

(e)

(h)

Entry Points

The entry point or points are stated. If more thanone, the distinction betweenthemis stated.
Entry Conditions

Locations of variables and parameters assumed by the subroutine on entry are given; also
details of the required indicators, and their state.

Results

Results produced by the subroutine together with locations occupied are given.

Storage

The number of words required for the storage of the program and constants is given.
Under the heading of temporary storage is shown the number of words used as working
space and whose original content is immaterial.

Time

If possible, either exact timings are given or else formulae from which processing time
can be calculated.

Limitations

Any limitations in the size of factors and accuracy of results are given.

Error Conditions

A brief account of tests made by the subroutine for any error conditions, together with
the action taken if such errors are detected, is given.

Notes

Any other necessary information about the subroutines, not given in other sections, is

included here.

Flowcharts and Program Sheets

The specification sheet should normally contain sufficient information for the user to be able

to incorporate the subroutine into his program. If, however, further knowledge of the subroutine

is required thenflowcharts and program sheets can usually be obtained. Some programming points

relevant to subroutines are considered below.

Entry to and Exit from Main Program

The instruction to jump from the main program to the first instruction of a subroutineis a

normal jump instruction.

For example, either

C | D| F A R C I Dl F A R

oo 0000
70 —-4— _—— e _’_7_ or 21) TESUESEII N

4| 00 0000 17

would effect a jump from the main program to the first instruction of a subroutine inI.A.S.location
0 of block 17.

3165(2.64) Part § 3

The subroutine is so written that, when it has been completed, it automatically restores

control to the instruction in the main program immediately following the jump to the subroutine.

Storage and Relativizers
Storage addresses written relative to the first location of a subroutine will use block
relativizer B. Temporary storage will use relativizer 1. If other relativizers are needed by the

subroutine (e.g. for a block of data), relativizers 3 to 9 will be used.

Indicators
Unless specified as an entry condition, library subroutines make no assumptions about the
state of indicators on entry to the subroutines, and users of subroutines should make no assumptions

about the states of indicators used by subroutines when re-entering the main program.
Programmed indicators employed by subroutines will be used in the reverse order19, 18, 17....

Library subroutines will not test the I.A.S. parity indicator unless this is stated on the speci-

fication sheet.

It is important to note that Library subroutines can be assumedto be resetting unless a definite

statement to the contrary appears on the specification sheet.

AUTOCODES 5.2

An autocode enables a programmer to write a program in a symbolic language which uses
alphabetic names and characters instead of numeric references. In some autocodes this use of
alphabetic names enables the program to be written in comprehensible English. A special program
is thenemployed to translate or interpret the autocode language program into machine coding before

it is obeyed by the computer. Thus the autocdoe method of programming is designed to:

(a) enable programs to be written in less time,

(b) reduce the amount of writing (and similar clerical work), and therefore the chance of
error with a consequent reduction in testing time,

(c) simplify program maintenance,

(d) make computer procedure comprehensible to people not trained in the machine code and
to enable these people to prepare programs with the minimum amount of training,

(e) standardize coding tactics and therefore permit the exchange of ideas and programs among

computer users.

When writing a program in autocode, the programmer does not have the same control over the
instructions or positions of storage as when writing a machine-coded program. Consequently the
programmer cannot adapt the program to suit his own requirements ideally. Thus a program
written in autocode is not usually quite as efficient in time or storage as a program written in
machine code. This disadvantage of autocode program efficiency is usually more than offset by

the advantages listed above.

4 Part 5 3165(2.64)

Initially, a source program is written in the autocode, which is a restricted form of language
conforming to certain defined rules. The source program must then betransformedinto a machine
-coded program: this machine-coded program is termed the object program. The transformation

is done by the computer under the direction of a processor program.

The processor program may be either aninterpreter or a translator. A translator transforms
the entire source program into the machine-language object program; the resultant object
program is then stored in its entirety and is either output in the form of punched cards or obeyed

immediately.

If the object program is obeyed immediately the complete translation of the source program is
achieved, then the system is known as a load-and-go system. The term load-and-go is derived
from the fact that the complete process of translation and execution of the translated program is

achieved in a single run on the computer.

An interpreter transforms the source program into machine-coded instructions and each
machine-coded instruction is obeyed immediately it has been created. Thus no complete object

program is produced and is therefore not available as output.

The programming language may be a machine-oriented language or a procedure-oriented

language.

A processor for a machine-oriented language is termed an assembly system or assembler.
A machine-oriented language is devised for a particular type of computer and consists of a code whichis
easier to learn than machine code. Programs can also be written more quickly using an assembly
language than using machine code. There is, however, a direct connection between the two,and cne
source program instruction often results in one machine-coded instruction in the object program.

Anexception to this arises for input and output whichis concisely achieved using an assembly system.

A processor for a procedure-oriented language is termed a compiler. A procedure-oriented
language is not necessarily devised for a particular computer. The same language may be used
for several different types of computer, each computer having its own compiler for converting the
source program intothe appropriate machine-coded program. The source program for a compiler
resembles a restricted form of language which conforms to the rules laid down for the autocode.
A compiler is more powerful than an assembler and one statementin a procedure-oriented language

usually results in several machine-coded instructions in the object program.

Further, an assembly system or compiler will be oriented towards the application to which
the source programs refer. For example, Rapidwrite is a commercially-oriented language and

MAC (Manchester AutoCode) is a scientifically and mathematically-oriented language.

There are at present four autocodes recommended for use on I.C.T. 1300-series Computers.

They are

TAS (Thirteen-hundred Assembly System) Rapidwrite
MPL (Mnemonic Programming Language) MAC (Manchester AutoCode)

3165(2.64) Part 5 5

Brief introductory details of these four autocodes are given in the following paragraphs and a

reference can be made to the appropriate manuals, which give full details.

The use of these autocodes is dependent upon certain minimum machine requirements (such
as the size of I.A.S. and magnetic drums ete.). Thus several variations of each processor may
exist. The specification sheets for the I.C.T. Subroutine Library Routines give full details of

machine requirements and storage.

Rapidwrite 5.2.1
Rapidwriteisa commercially-oriented autocode. The source programis converted to machine

code by a translator/compiler program.

Initially, a source program is prepared using specially designed pre-printed forms and dual
-purpose cards. The latter enable the program to be built up on the lines of a flowchart with
moveable blocks. The fixed format of the dual-purpose cards and the forms reduces the amount
of writing and punching and, in consequence, errors resulting from these operations are also
reduced. The source program is read into the computer and a preliminary routine produces a full
descriptive print-out of the program in English. When the program has been corrected by using
this routine, it is again read into the computer and the object program is compiled. The object
program will be both punched and printed. The print-out of the object program will contain a
reference to the print-out obtained from the preliminary routine. The object program will be

ready for testing after insertion of any required subroutines and the addition of a standard program.

A Rapidwrite source program is written in three clearly defined divisions: Environment,

Procedure and Data divisions.

The Environment division, which is filled in on a pre-printed form, deals with the specification
of the computer andincludes such data as the size of I.A.S. anddrum storage and console indicators

which are to be used.

The Procedure division deals with instructions handling the processing of the problem and is
written onspecial dual-purpose cards and one card is allocated for each instruction such as READ,

WRITE, COMPUTE, IF or GO.

The Data division which deals with the organization of data is written on special forms. Data
names not exceeding five characters in length are used and if required these can be translated into
full data names, up to 30 characters in length, by supplying the processor with a list showing the
full names against their abbreviations. The data form when complete will contain all the relevant
information on the input and output files required by the processor for the storage of data, the

kind of information held in a field and the allocation of working storage.

TAS 5.2.2
TAS (_Ihirteen—hundred Assembly §ystem) is a commercially-oriented autocode and is provided

as an intermediatelanguage which lies between machine language and a full autocode language such

6 Part 5 3165(2.64)

as Rapidwrite. Thus, a programmer writing in TAS will require a greater knowledge of the
machine code than one using Rapidwrite. The source program is converted to machine code by a
translator/assembler program. Each TAS instruction generates an arerage of four machine code
instructions and thus writing time is considerably reduced. TAS is ideal in cases where programs

are needed urgently or for small programs e.g. those requiring less than two weeks machine coding.

The source program is written in TAS language on special stationery from which one card is
hand punched for each line of entry. These cards are then fed to the computer and the object
program is produced on fast-read program cards in one run. A print-out of the source program

and other print-outs to aid the programmer can also be produced.

To write a TAS program, it is necessary to:

(a) Specify tables for storage on the drum.

(b) Describe each Input card.

(c) Describe each Output line.

(d) Describe each Qutput card.

(e) Write the procedure program from a selection of functions with the facility of adding

subroutines and machine-coded instructions.

Dataread from a card or printed on aline are referenced in the program as a field name, the name
being introduced when the programmer describes each card or line of print. Data of a bulky or

lengthy nature are best handled in the form of tables which are stored on the drum.

There is an assembler available which allows the programmer to use magnetic-tape storage
and special instructions are included in the autocode for controlling the reading and writing of tape.
Facilities are provided for the programmer to specify his own tape records, each record being

described as a series of field names.

MPL 5.2.3

MPL (_N_Inemonic Programming Language) is a commercially-oriented language specially
designed for users with a small machine configuration which does not permit the use of TAS or
Rapidwrite etc. MPL may be used on a machine with the basic configuration of 400 words 1.A.S.
and a 3,000 word drum. The MPL processor may be used as a load-and-go assembler or may

punch out the object program, the appropriate mode of operation being selected by means of a switch.

The source program is written in the MPL language which has a one-character function code
and five-character operand. Most MPL instructions result in a corresponding machine-code
instruction being generated i.e.on a one-for-one basis. The main exceptionsto this are the power-

ful input/output and division macro-instructions.

When the object program has been created, it is stored automatically by the assembler. When
the object program has been stored, the assembly program is overwritten by a standard control
program pack which contains an input/output package. This package may incorporate either a

P.P.F. control routine or a routine for serial batch processing.

3165(2.64) Part 5 7

When the standard control program pack has been read in, it is possible to run the program,
for it is not necessary to punch out the object program before testing takes place. When the object

program has been satisfactorily tested, a proved object program may be punched on cards.

MAC 5.2.4
MAC (Manchester AutoCode) is a mathematically and scientifically-oriented autocode and has

been designed for programs which comprise the solution of mathematical equations or formulae.

The MAC compiler operates on the load-and-go principle only. Thus the object program is
compiled each time a job is run. This is not however significant since the time taken to compile
the object program is small. Further, since the problems for which MAC is used are of a mathe-
matical nature, the object program is not normally run at regular intervals as is a commercial

program.

A MAC source program comprises autocode instructions and directives. Usually a MAC
instruction will result in several machine-coded instructions being produced: these instructions

forming the object program.

Directives transmit information to the translator for allocation of storage and do not form part

of the object program.

The translator converts MAC instructions in the source program to machine-coded instructions
which will produce for example, the procedure to solve an equation. A trigonometrical or logarithmic

function may be initiated in MAC using a single instruction.

P.P.F. PROGRAMS AND INPUT/OUTPUT ROUTINES 5.3
P.P.F. Programs 5.3.1

It is usual for the computer to process jobs that involve the use of the card reader and punch
and the printer. In general, one card being read will not result in one card being punched or one
line being printed. Assume, for a practical example, that the duty cycle consists of five cards read,

one card punched and six lines printed. This task could be tackled serially, as follows:-

Program to read five cards
Program to process data
Program to punch one card

Program to print six lines.

Ona machine with a600 cards a minute reader, 100 cards a minute punch and 600 lines a minute
printer the time taken to read five cards is 500 milliseconds; the time taken to punch one card is
600 milliseconds and the time taken to print six lines is 600 milliseconds. Consequently, the input/
output share of the duty cycle takes 1.7 seconds. If the three input/output programs were
integrated into one program, so that the time taken was the time of the longest operation, i.e. 600

milliseconds, fargreater efficiency would result and the task would be tackled in parallel as follows:-

8 Part 5 3165(2.64)

Program to read five cards punch one card and print six lines

Program to process data.

The punchand the printer are, of course, operating onoutput data fromthe previous processing.
The peripheral units are cyclic in operation in that, having produced or accepted one unit of
information, they will not produce or require another unit of the informationuntil a set time interval
has elapsed. The program dealing withthisunit of information may not take as long as this interval

and there may be spare time that can be used by the other units.

Therefore, integration is possible without taking any additional time over that taken for the

longest single operation.

Print, Punch and Feed (P.P.F.) programs are written as three separate programs - a card
reader program, a card punch program and a line print program linked together by means of a
control routine which ensures that the priority of the different programs is in accordance with the
requirements of the input/output units. With a P.P.F, in operation there is no further spare time

in which to process data, so that duty cycle is:-
P.P.F, - Process.

The main program sets certain keys before entering a P.P.F. These keys instruct the P.P.F.
as to how many cards are to be read and punched and how many lines are to be printed. These
keys are not necessarily constant and may vary throughout a program to permit, for example, the
number of lines of print produced to be different each time the P.P.F.is entered. Several compre-

hensive P.P.F. programs are available from the I.C.T.Subroutine Library..

As card readers and line printers with differing speeds are available, the most efficient duty
cycle and the timings will be different for different machines. The example given above applies to
amachine with a600 cards a minute reader and 600 lines a minute printer. For a 300 cards a minute

reader and 300 lines a minute printer, the variables could be as follows:-

Duty cycle:- 3 cards read Time to read 3 cards is 600 ms
1 card punched Time to punch 1 card is 600 ms

3 lines printed Time to print 3 lines is 600 ms.

Thus the input/output share of the duty cycles is 1.8 seconds but using P.P.F. the time taken

will be 600 milliseconds.

Input/Output Routines 5.3.2
Besides the P.P.F.routines, there are also Library routines available for the individual control of
each peripheral unit. Some of these provide an exit from the subroutine to enable the programmer

to time-share some of his main program with the peripheral unit program.

3165(2.64) Part 5 9

General routines are also available which distribute data into the format required by the output
routines, or alternatively distribute information read by an input routine into a form suitable for
processing. The positions of the data fields for processing are communicated to the distribution

routine by keys which are set by the main programmer.

MAGNETIC-TAPE CONTROL AND UTILITY ROUTINES 5.4
Tape Layout 5.4.1

The layout and organization of data on magnetic tape should conform to an I.C.T. standard
format. Essentially, data are recorded on tape in blocks and the length of a block is defined by an
end of block marker; see 3.8.1. Data within blocks can be grouped into fixed- or variable-length
records. It is the programmer's responsibility to arrange data into conveniently sized records

and blocks.
There are three main considerations in tape layout:

(a) Tape Labels
(b) Block Layout
(c) Record Layout.

Tape Labels
Two identification labels must be written to tape; these are the beginning of tape label and the

end of tape label.

The beginning of tape label precedes the first data block. This label contains information by
which the reel can be identified, topgether with a date at which the tape can be overwritten and a
count of the number of times the tape has been written. The standard format for the beginning of

tape label is described in the Tape Housekeeping Manual,

The use of beginning of tape labels ensures that the correcttapes have been fitted and prevents

master information being overwritten if a wrong tape is loaded.

The end of tape label must appear at the end of every tape reel. For a single reel file the end
of tape label is an end of file label. However, if a file comprises several reels, all but the final
reel must bear an end of reel label. The end of tape label contains a count of the number of blocks
in the reel. The standard layouts for the end of reel and end of file labels are described in the

Tape Housekeeping Manual.

Other than the beginning of tape label block, all label blocks are short blocks, i.e., blocks of

exactly four words, including the end of block marker.
Block Layout

A block will consist of a number of sorted or unsorted records. Each record is identified by

a key. The first word (word 0) of a block consisting of sorted records must contain the most

10 Part 5 3165(2.64)

-significant word of the key of the last record in the block (i.e. the highest key). If a block con-

sists of unsorted records, the contents of the first word are immaterial.
Word 0 is followed by the first record in the block.

The last word of the block is the end of block marker i.e. a word of 15s.

Example INTER-BLOCK GAP

Word 0 lst word of key of record number 3
Word 1 007 XXX XXX XXX

: t d
Word 3 Ist word of key tst recox
Word 4 2nd word of key
Word 8 025 XXX XXX XXX
Word 10 Ist word of key dud weeond
Word 11 2nd word of key
Word 33 016 XXX XXX XXX

. 3
Word 35 1st word of key xd record
Word 36 2nd word of key
Word 49 15 15 15 15 15 15 15 15 15 15 15 15

INTER-BLOCK GAP

Record Layout
The three most-significant digits of the first word of each record must contain the number of

words in that record.

The key, identifying the record, may consist of either alphabetic or numeric data. If an
alphanumeric key is required to be used during sorting, then the data must conform to the ZNZNZN
~---ZN format (where Z = Zone and N = Numeric), i.e.the code components for each character
must be adjacent. The key may consist of any number of consecutive words (with the exception
that some routines, sorting for example, limit the number of words in a key) and the first word
of the key may be located anywhere in the record. The position of the first word of the key within
the records of one file must be constant. For example in the illustration above, two words precede
the first word of the key in each record. The number of words preceding the first word of the
key will be a parameter that has to be given to Tape Sorting and other routines. Keywords must

have values in the range of 000 000 000 001 to 499 999 999 999 inclusive.

Tape Housekeeping Routines 5.4.2
I.C.T.provide programs to cover all aspects of reading data from, and writing data to, magnetic
tape. This series of programs is known collectively as Tape Housekeeping Routines. A manual

is available that gives full details of these routines.

3165(2.64) Part 5 11

Housekeeping routines are provided to simplify the using of magnetic tape by assuming control
of all reading, writing and associated contingencies. These contingencies include correction of

errors, treatment of end of reel, end of file and beginning of reel conditions.

The routines are usually inthe form of program packages, that is, a number of interdependent

programs controlling all the various aspects of reading or writing tape.
For example a Tape Write Package is a package consisting of programs to facilitate:
Tape Preparation
Write Label Check
Tape Write

Write Exceptions.

Briefly, these programs cover such contingencies as:

(a) checkingthe initial setting-up of the appropriate deck by testing for mechanical readiness,
(b) testing for presence or absence of a writing ring,

(c) the checking and identification of labels,

(d) the writing of tape,

(e) error detection and correction, end of tape condition and short blocks etc.

Packages are available for writing and reading tape and also for controlling both reading and
writing.
A full list of Tape Housekeeping routines available will be found in the Subroutine Library Index

of Specification Sheets.

It should be noted that certain conventions are observed in the writing and subsequent using of
the Housekeeping routines. These conventions are described fully in the Tape Housekeeping

Routines Manual.

Job Set-up

The Job Set-up routine is employed at the commencement of any job using magnetic tapes and
ensures that the correct tapes have heen fitted for the job and that the tape decksare mechanically
ready. The routine will create labels on write tapes, check labels on read tapes, and set up areas
of information on the drum and in I.A.S. without which other Tape Housekeeping routines will not
function correctly. Thus, this routine will ensure that the tape decks are correctly loaded and
ready for a job to be run. On exit from this routine, the tapes are positioned for writing or reading
after the beginning of tape label. If the user program is held on tape this routine will load that

program on the drum.

12 Part 5 3165(2.64)

Write Program to Tape

A program stored on the drum may be written to tape by using two Subroutine Library routines:
*Write Program to Tape’ and a selected write to tape program. The former routine prepares a
program held in absolute form on the drum for writing to tape and the selected write routine

enables this program to be written to tape.

The Write Program to Tape routine performs no tape operations but prepares the program to

be written to tape from the drum in the following manner:

(a) The spurious end of block markers are removed i.e. any constants consisting of words of
15s which are not intended as end of block markers.

(b) The program is arranged in contiguous locations.

(c) Standard program labels are manufactured.

(d) The program is arranged in blocks of a specified size.

An exit is made to the user's write routine for the writing of each block.

Magnetic-Tape Sorting
Several routines which facilitate the sorting of data on magnetic tape are available from the
Subroutine Library. These routines usually require the use of four or threetape decks or three

tape decks and a magnetic drum.

Merging Using Four Tape Decks

The most fundamental method of sorting is the merge. In this routine records are written
from two input tapes, formed into pairs in sequence and read to two output tapes. This sequence
of operations is known as a pass. On the next pass, the tapes reverse their ralen, that is,the tapes
that were used previously for output are now used for input and vice versa. The pairs of records
are merged to form groups of four and on the next rungroups of eight and so forth, the length of the
group being doubled on each pass. A groupof recordsin sequence of this nature is known as a string.
The merging is continued until all the records form one string. It will require logzN passes,

where Nis the number of recordsto be sorted, the logarithm being taken as the next highest integer.

In order to save computer time, before entering the merge routine, the records are normally
partially ordered (using a special pre-stringing routine) into strings of ordered records. These
strings are each an integral number of blocks. The pre-stringing routine arranges the blocks
from one tape onto twotapes ready for input to the merge routine. The merging sort then requires

logzs passes, where S is the number of strings.

Merging Using Three Tape Decks

A Tape Record Merge using three tape decks operates in basically the same manner as that
required for the four tape deck version. Merging takes place between two input tape decks, the
resultant strings being written on a third tape deck. The next pass reads the strings from the

third tapedeck so that the strings are written alternately to the twotapedecks initially employed

3165(2.64) Part 5 13

forinput. Thustwo tapes arepreparedfor a subsequent merge pass. Mergingusing threetape decks

doubles the number of passes required to produce a completely sorted tape by using four tape decks.

This routine should be used in preference to the Three Tape and Drum Sort described below

when large volumes of data are involved.

Sorting Using Three Tape Decks and the Magnetic Drum
If part of the magnetic drum is available for use in the sort, a routine is available so that

sorting may be achieved by the following method.
Initially a batch of records are read from deck address1to the magnetic drum; see Figure 51.

These records are then sorted on the drum and written to tape on deck address 2. On the next
pass a second batchof records areread fromdeck address1to the magnetic drum, sorted internally

and then merged with the records on deck address 2 to deck address 3.

Subsequent merging is from deckaddress 3 to deck address 2, then back again until the whole

of the input file has been sorted.

Deck Deck
Address Address
1 2

Magnetic Drum

V.

B BN First Pass

3
[>|] Second Pass

Deck
Address

Figure 51: SORTING USING THREE TAPE DECKS AND THE MAGNETIC DRUM

GENERATOR ROUTINES 5.5
A generator is a routine that, when provided with parameters, creates instructions to form a
routine which the programmer requires. Generators are available for creating input and output

distribution routines and drum sorting routines.

14 Part 5 3165(2.64)

A generator is provided with keys similar to those provided for a general program. For
example, for an input distribution program, the keys specify the position into which the data fields
are to be distributed. The generator differs from the general routine in that having extracted the
required information from the keys, it does not obey the routine but punches it on cards. The

punched routine can then be included in the main program as a subroutine.

It is likely that, in a given job, the keys for a general routine will be the same every timeit
is used. In this case, it is preferable to use a generator and include the generated program in
the main program rather than the general routine. This will save the computer time used by a

general routine to extract the same information from keys every time the program is run.

DIAGNOSTIC ROUTINES 5.6
A diagnostic routine is a routine which has been designed to locate an error in programming;

i.e. to determine where in a faulty program a program error has occurred.

The testing of a program by using diagnostic routinesis accomplished in what may be considered

as three hasic steps:

(a) Checking the validity of data punched in the program cards.
(b) Checking storage of the program.

(c) Testing the program itself, in sections.

I.C.T. diagnostic routines are available from the Subroutine Library to facilitate the testing of

programs as outlined above.

Validity Check 5.6.1

With the aid of theI.C.T. Validity Check routine, a validity check may be made on the program
pack to ensure that all the instructions in a program conform to the correct layout required for the
machine specification; any instructions which are in error (i.e. they do not conform with the
correct format) are printed out. Enough information is printed out to enable such errors to be
located and corrected. This routine ensures that if errors arise in a program, it is not due to

incorrect program instructions (instructions not in the correect format) being read in.

Proving Storage 5.6.2
A diagnostic routine, called the I.A.S. and Drum Print-out routine is available. This routine
can be used for obtaining a complete print-out of the program as it is stored on the relevant area

of the drum. This diagnostic routine will enable any incorrectly set relativizers to be detected.

Memory Dump 5.6.3
The examination of a program during a test run may be achieved by using the I.C.T.
Memory Dump routine. This diagnostic routine enables the contents of I.A.S. and certain drum

channels to be automatically printed out at specified points in the program.

3165(2.64) Part 5 15

The routine is read into the machine with the program under test together with certain

specifications. These specifications will state the following:-

(a) The exact location of points in the program under test at which certain areas of storage

are to be printed out.

(b) Which groups of drum channels are to be printed out. One group of drum channels to be

printed out is specified for each break-in point in the program under test.

Essentially, the Memory Dump routine may be considered as being intwo sections - a prelimin -
ary routine and a print-out routine. Control is initially transferred to the preliminary routine
(by arrangement of card packs) so that this routine, by using the specifications in (a) above, can
substitute into the program under test, instructions to facilitate the entry into the print-out at the
required points. The program under test is then run normally on test data as if the Memory Dump
routine were not present. At the reﬁuired points in the program under test, the substituted
instructions cause entry to the print-out routine and all the contents of I.A.S. are printed out

together with the specified drum channels.
The program under test then resumes control and continues to run in the normal manner.

The print-out will appear in blocks of two hundred words these being fifty lines of four words

to a line, e.g.

370012 450038 006b 450110 030027 0ilb

0610
G011 640097 ST70011 0061 360170 560006 Giil

nofa 450001 030010 Go6a A20409 280021 o112

The above is an example of a segment of such a print-out.

It should be noted that the original state of the program under test is restored when the print
-out routine is entered, thus the instructions referring to the Memory Dump routine are not printed

and no space need be left in I.A.S. for the Memory Dump when writing the program under test.

The Memory Dump routine enables the programmer to determine which sections of program
contain errors. To find the exact point in a program which is in error a Trace routine must be

employed.

Trace Routine 5.6.4

To pin-point an error in a section of a program it is of course possible to step through the
section of program manually on the computer observing the contents of registers etc., but this
involves the cost of much machine time. The same results may be obtained much more efficiently
with the I.C.T. Trace routine. This diagnostic routine is a great aid to the programmer in testing

programs. It produces:

(a) A print-out of the instructions obeyed by the program under test in the order in which

they were obeyed.

16 Part 5 3165(2.64)

(b) A print-out of other relevant information about the effects produced by these instructions.

The Trace routine is used in much the same way as the Memory Dump routine, the main

differences being in the specifications given with the Trace routine and the information printed out.

The specifications give the start and end points of the sections of the program under test which

it is desired should be traced. @ When the program under test reaches the substituted instructions

to enter the trace (substituted by a preliminary routine as in the Memory Dump) and the trace
print-out is called in, the trace obeys the programunder test one instruction at a time. After each

instruction has been executed the following information is printed out:
{a) The I.A.S. location of the instruction just obeyed.
{b) The instruction just obeyed.
(¢) The contents of Register B.
(d) The contents of the 1.A.S. location specified in the instruction.

(e) The time which the program would have taken to reach this point.
An example of a segment of a trace print-out shown below.

Contents of

ILA.S. s—— Contents of Time
Location of Desi . . & s I.A.S. referred Accumulated
p——— esignation{Function/Address after obeying to after obevin £

ying so far
current ; 3 .
obeyed ; p current instruction | (Microseconds)
instruction
0001 0 67 0019 000000000101 000000000001 ARG
4 02 0001 000000000101

0001 0 67 0019 00000C000101 000000000000 412
4 oz 0001 000000000101

0002 0] =W Q011 Q00000000000 c00000000000 453
0 42 0001 000000000000 000000000000 474

0003 0 37 0002 570011420001 570011420001 507
0 36 0003 770013760003 770013760003 528

0004 0 62 00053 540027520006 770013760003 561
0 40 0004 540027520006 000000000000 582

0005 4 00 0004 540027520006

0004 0 00 0000 540027520006 000000000000 606
0] 00 0000 540027520006 000000000000 618

0005 4 00 0004 540027520006

0004 0 00 0000 540027520006 000000000000 642
0 00 0000 540027520006 000000000000 654

The information displayed in the print-out should allow program errors to be easily located.

Other trace routines with special characteristics are available, which may beused in preference
to the full I.C.T. Trace routine.

If full details provided by the I.C.T. Trace routine are not required, the Indicator Trace

routine might be used. This routine operates under the control of a manual indicator and prints
either as the full trace or else suppresses printing on all except jump instructions (i.e. successful

indicator tesis).

3165(2.64) Part 5 17

The I.C.T. Trace routine slows down the rate at which instructions in the program under test
are executed, Thus the I.C.T. Trace routine cannot be run on sections of a program which contain
input, output or magnetic-tape operations. If the programuses standard proven library subroutines,

there is no need to waste time tracing them.

The Trace routine can therefore be obtained in such a form that subroutines which are not

required to be traced can be automatically avoided.

A

Program Updating Routine 5.6.5
Having traced an error in the tesiing of a program, it then becomes necessary to rectify the

programming error.

The amendment of the program by means of the insertion or deletion of words, besides creating
the problem of re-allocation of storage, causes other difficulties. Jumping over an unwanted
portion of program is wasteful of storage and untidy. Jumping out to previously unused storage
locations in order to effect insertions can cause great confusion as the number and complexity of
amendments increases. The actual deletion of a section of program or insertion of a group of
words, besides making a rewriting of the particular block of program necessary, invalidates
addresses elsewhere in the program. These addresses could be located and converted but the

labour involved could be immense.

The I.C.T. Program Undating routine is designed to reduce this labour. If amendments have
been made by inserting or deleting words throughout the program card pack and resetting the
relativizer settings to the re-allocated storage locations, then the program pack can be fed as data

cards to the Program Updating routine.

The Program Updating routine pack, together with specifications indicatingthe size and location
of deletions and insertions which have already been made to the program under test is read into the
machine. The program under test is thenplaced in the cardread hopper and is read and processed
by the Program Updating routine. Depending on the setting of manual indicators, the routine
produces a printed and/or punched version of the program under test in which all addresses
made invalid by the insertions or deletions have been corrected. The printed output is in the
format of a normal program giving the absolute-address form of the program alongside the

relative-address form.

UTILITY ROUTINES L

Routines are available that do not belong to any particular category but have such general
applications that they may be included in almost any type of program. These Utility routines
cover such programs as division routines, sorting routines and routines for detecting parity errors

and taking appropriate action.

18 Part 5 3165(2.64)

Division Routines 5.7.]
Division is not built into the hardware of the computer but is accomplished in subroutines by
repeated subtraction. Routines are available which cover both decimal and sterling division for

positive and negative numbers.

Parity Error Routines 5.7.2

Various routines are available for testing the drum and I.A.S. parity indicators after a drum
transier has been obeyed. The programming implications of parity errors are described in 4.8.
It should be noted that:

(a) An I.A.S. parity check is made when data are transferred from I.A.S. Hence an I A.S,
parity error can only be detected when the transfer is from I.A.S. to the drum. If the
ILA.S. parity indicator is found to be set then the computer is brought to a stop (11 1006
displayed in CR3). If this stop is encountered then a return must always be made to the

previous restart point.

{b) A drum parity check is made when data are transferred from the drum. Hence a drum
parity error can only be detected when the transfer is from the drum to I.A.S. If the
drum parity indicator is found to be set then the computer is brought to a stopwith 11 1007
displayed in CR3. When the Start button is pressed a further attempt is made to obey the
drum transfer. If there is a persistent failure, then a return must be made to the

previous restart point.

(c) A parity error routine (or a programmed test of indicator 07) should be used for
every transfer from the drum. If a parity failure is detected on a transfer from the drum
which is not followed by a test of indicator 07 then the program will detect this error the
next time indicator 07 is tested. Indicator 07 will be unset by testing and a repeat of the
drum transfer preceding the indicator test (which is not the transfer in which the ﬁarity

check failed) will apparently correct the error.

For some of the library routines the drum transfer is given as a parameter and is obeyed in
the subroutine. It is recommended that these should beused since they make it possible for a drum
transfer instruction to overwrite its own storage location in I.A.S. If a drum parity error is
detectedthen, asthedrumtransfer is retainedinthe subroutine, another attempt can be made to effect

the transfer.

Zero Suppression Routines 5.7.3

During output distribution, particularly prior to printing, it is very oftennecessaryto distinguish
between significant and non-significant digits in a data field. For example, if a quantity is
allocated six positions on the printed sheet, and a particular value is only a four-digit number,
then it is likely that it will be required to suppress the two non-significant zeros (leaving spaces)

and print only the four-digit number. This process is known as zero suppression. It consists of

3165(2.64) Part 5 19

giving a zone component of zero to non-significant zeros and a zone component of one to significant

digits. Standard zero suppression routines are available for both decimal and sterling fields.

Punching Program into Fast-read Cards 5.7.4

Fast-read program cards (preceded by a control word of designation F) enable five 12-column
words per program card to be read in under Initial Orders. FEach word is punched exactly as it
appears within the computer i.e. all addresses are absolute, negative numbers are in complementary
form etc. Thus, by usingfast-read cards, Initial Orders merely read and store the data read in the
form in which they are punched. A full description of Initial Orders and fast-read cards will be

found in the Initial Orders Manual.

Fast-read cards may be punched in the correct format fromdata held on the magnetic drum, i.e.
a proved or compiled program may be punched into fast-read cards from the drum for later use

as input.

Several subroutines are available from the Subroutine Library which enable fast-read cards to

be punched in the required format from the absolute information as it is held on the drum.

Sorting Routines 5.7.5

The arrangement of data records into ascending numeric sequence, is an essential part of
computer usage. The sequence is arranged according to a key held in a given position within
each record. Sorting methods are available which enable source items to be examined in their
initial sequence and thence to be rearranged in a required sorted sequence. Many subroutines are
available from the Subroutine Library which cater for most aspects of sorting of fixed-length or
variable-length records. Data held on the drum or in I.A.S. may be sorted and several sorting
methods are available. The present subroutines available provide three basic methods of sorting

data in I.A.S. and on the drum; these methods are:

Merging Sort (drum or 1.A.S.)
Extraction Sort (I.A.S.)
Exchanging Sort (I.A.S.)

Subroutines are also available which facilitate the insertion of a record into its appropriate

place within a string of variable-length or fixed-length records.

Merging Sort

Sorting by merging consists of taking two or more ordered groups of data (called strings) and
collating these into one ordered group or siring. When data are presented in random order.
straight merging may be employed. That is, the initial strings are considered as being composea
of one item only. The routines available for 1.A.S. sorting are all able to employ the straight
merge because of the fast internal speed. The method is as follows: The first two keys are

compared and their corresponding items placed in their correct order in one receiving area. The

o

.6

1S

3165()

20 Part

o

next two items are merged in a similar manner and the result placed in a second receiving area.
Each new string subsequently created from a pair of original items is then placed alternately into
cne of the two receiving areas, after the strings already contained in the area. When all the data
have been examined in this way the first pass is complete and two streams of data now exist, each
consisting of ordered strings of pairs of the original items. The two receiving areas are now
used as source areas and the process repeatedusing two other receiving areas. This time the pairs
are merged into groups of four. The data are thus passed back and forth, the areas alternating as
receiving and source areas until one completely ordered string emerges. The sort is then
complete. This method of sorting by merging using two input areas and two output areas is some-

times called_a two-on-two sort.

EXAMPLE OF A 2 ON 2 STRAIGHT MERGE

Initial 1st Pass 2nd Pass
Order Area 1 Area 2 Area 3 Area 4
8 4 1 1 2
4 8 7 4 3
7 2 3 7 5
1 9 5 8 9
9 £ “ 5 -

2
3
5
6
3rd Pass 4th Pass
Area l Area 2 Area 3 Area 4
1 6 1
2 2
3 3
4 4
5 5
7 6
8 7
9 8
— 53

In practice,areas 1 and 2 are combined into a single area the length of the original data area,

and areas 3 and 4 are combined to overwrite the original data area.

For drum sorting, records are stored in blocks. These blocks are of a given decade length,
usually 20 decades to make channel transfers possible although 10 decades are often used on 400

I.A.S. machines.

The first part of a drum sort entails merging the records within each block using an ILA.S.

merging sort and then storing these blocks on the drum.

3165(2.64) Part 5 21

A drum merging sort is then used to sort these blocks into their own area on the drum ina
sequence defined either by an index in L.LA.S. or by a word in each block containing the address of
the next block. To do this pairs of blocks are brought into I.A.S., merged together and returned to
the drum, giving strings of pairs of ordered blocks. These pairs of blocks are then merged to give
strings of four blocks in order. This process is repeated until there is only one string. A Drum

Reshuffle routine uses the index to put the blocks thus orderedinto a completely sortedfile on the drum.

Extraction Sort
An extraction sort entails the sorting of records according to a keywordwhich is the first word
of a record. Routines are available for an extraction sort on both variable-length and fixed-length

records.

Basically, an extraction sort involves the extraction of the keywords and their addresses from
the original date for an index which is in effect a set of two word records. These key records are
sorted by a merging sort, and the addresses are then used to transfer the original records from
their data areasto the output area in ascending keyword order. One advantage of using this method
is that the I1.C.T. subroutines allow the output area to be usedas a working area to the index merging

sort so that no extra storage area is required other than the original data and output area storage.

Exchanging Sort
An exchanging sort entails the sorting of records (according to a keyword which is the first
word of a record) within the original data storage area. The method given below is used in the

standard I.C.T routine.

The first key is compared with one half-way through the list of data. An exchange takes place
if necessary. The second two keys of each half are compared and so on until all the data has been
covered. A second pass over the data is made, the distance between the two keys being compared
now being half what it was before. Passes continue, the distance between keys being halved at each
successive pass, until finally each key is compared with the next. The sort is then complete. If
at any timeduring a pass anexchange takes place, the lesser item is further compared with earlier
items and shifted to its correct position. TIf the calculation of the distance between keys to be

compared does not produce an integer, the next lowest integer is taken as the value.

COMMERCIAL ROUTINES 5.8
The [.C.T.Subroutine Library contains a number of subroutines which cover some of the essential
commercial programs that are commonly required, e.g. P.A Y E,, sterling and decimal conversions,

Graduated Pensions etc.

P.A.Y.E. 5.8.1
Routines are available for both monthly and weekly P,A,Y.E. calculations and these routines

are constantly amended to conform to Budget changes.

22 Part 5 3165(2.64)

Computation of weekly or monthly P.A.Y.E. contributions is made on data usually required in

P.AY.E, accountancy, i.e.

Gross Pay brought forward
Gross Pay for period
Tax brought forward
P.AY.E. Code Number
Week (Month) Number
Tax Basis Code
Fixed Amount of Tax.
Given the data above, it is possible for the subroutines to compute:
Gross Pay carried forward
Tax carried forward

Tax for period (positive or negative, negative being an indication of a refund of tax).

Graduated Pension Contributions 5.8.2

I.C.T. subroutines are available which compute contributions for the Graduated Pension Scheme
for a pay period of one week, multiples of one week or a calendar month. Once the gross pay for
the pay period has been determined (i e. gross pay for one month or N weeks etc.) the Graduated

Pension Contributions subroutine is entered to calculate the appropriate contributions.

Sterling and Decimal Conversions 5.8.3

A number of subroutines are available which enable such conversions as:

Sterling to £ and decimals of a £
Sterling to pence
Pence to sterling

Sterling amounts (in numeric form) to English (in alphabetic form).

MATHEMATICAL AND STATISTICAL ROUTINES 5.9

Floating-point Arithmetic 5.9.1

In arithmetic calculation it is often convenient to represent numbers by two factors, a decimal
quantity and some power of a chosen radix. For example, in denary arithmetic the radix is 10.
The number 83256817000000 can be represented by 0.83256817 x 1014. Similarly for very small
numbers: 0.0000000078325763 =0.78325763 x 10‘8' This is known as floating-point representation
and can be very useful in overcoming the limiting size of registers. Packages are available for
performing the normal arithmetic operations of addition, subtraction, multiplication and division
with numbers which range in magnitude from 1 x 10"51 to1x 10'1'49 retaining 9 significant digits

throughout the range.

3165(2.64) Part & 23

Matrix Arithmetic 5.9.2
Many calculations, especially in engineering, are concerned with linear relationships of variables
(e.g. Hooke's Law), and problems often arise in the form of several linear equations relating one

set of variables yl, Yogr Ygs-oeees 2 to another set Xy, Xgy X

This gives n simultaneous equations which written in full are:

}'1—311X1+2.12 x2+ 3.13 X3 +a1n Xn
Yz = 3.21 xl + 3.22 Xz + 3.23 x3 + 3,2n Xn.
b i
I | 1
| 1 1
| | |
o !
] :
] ’ '
| { :
I | 1
1 | I
| 1 :
Yo =8 Xt R g Kg + 8 g Xgemeoininns ra X,

where a1 is the coefficient of X in the expression for Yy The convenient abbreviated form of this

set of coefficients is called a matrix and is written as follows:

a a 2 R a

11 712 "13 1n
(O DU (e — eenanes

21 “22 “23 29n
| |
]]
| |
| |
| |
|]
|]

1)

3 |

1 |

I |

I |

1 1

I 1

Ao 8 aicicisivia b SO R a
a4n1 *no anB nn

The equations are denoted by the single expression:

y = Ax
where A is the matrix above of n rows and n columns. A set of subroutines is available for
carrying out the common operations of linear algebra, i.e. addition, subtraction, multiplication,
transposition, inversion, calculation of eigen roots and eigen vectors, and the solution of

simultaneous equations. Facilities are also provided for reading in and printing out a matrix.

Double - length Arithmetic 5.9.3

For use in those cases where the numbers used can vary moderately in size, and in which a
high degree of precision is required, a double-length arithmetic package is available which gives
facilities for carrying out the normal arithmetic operations with numbers which are 22 digits long

instead of the usual 11 digits.

24 Part 5 3165(2.64)

Special Mathematical Routines 5.9.4
Linear Programming is used to optimize a linear function of a set of variables subjected to
linear constraints, by means of the Simplex Method. Facilities are provided for taking into account

the imposition of upper and lower bounds on the variables.

Statistical Programs are available for the analysis of sets of experimental observations. These
have the ability to draw inferences regarding the representation which most closely f{fits the
observations. '

Engineering Programs have been developed to evaluate the stresses and deflections induced in
common structural forms by the loads imposed upon them.

A set of subroutines are available for the evaluation of commonly occurring Mathematical

and Trigonometrical Functions such as exponential, sine, tangent, etc.

Manchester AutoCode 5.9.5
The Manchester AutoCode provides facilities for incorporating into a program MAC routines

which have been written independently of that program. Certain general purpose MAC routines are
available from the I.C.T. Subroutine Library. The mathematical and statistical library routines

therefore fall into three groups:

(a) Complete routines for which the user need only supply data. These may be written

either in MAC or in machine code.
(b) Subroutines written in machine code which may be incorporated into machine-coded programs,

(c) General purpose routines written in MAC which may be incorporated into MAC programs.

3165(2.64) Part 5 25

